Kiến thức

Kinetic bromine isotope effect: example from the microbial debromination of brominated phenols

  • Original Paper
  • Published: 07 October 2012

Kinetic bromine isotope effect: example from the microbial debromination of brominated phenols

Analytical and Bioanalytical Chemistry

volume 405pages 2923–2929 (2013)

Cite this article

  • 668 Accesses

  • 18 Citations

  • Metrics details

Bạn đang xem: Kinetic bromine isotope effect: example from the microbial debromination of brominated phenols

Abstract

The increasing use of kinetic isotope effects for environmental studies has motivated the development of new compound-specific isotope analysis techniques for emerging pollutants. Recently, high-precision bromine isotope analysis in individual brominated organic compounds was proposed, by the coupling of gas chromatography to a multi-collector inductively coupled plasma mass spectrometer using strontium as an external spike for instrumental bias correction. The present study, for the first time, demonstrates an application of this technique for determining bromine kinetic isotope effects during biological reaction, focusing on the reductive debromination of brominated phenols under anaerobic conditions. Results show bromine isotope enrichment factors (ε) of −0.76 ± 0.08, −0.46 ± 0.19, and −0.20 ± 0.06 ‰ for the debromination of 4-bromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol, respectively. These values are rather low, yet still high enough to be obtained with satisfying certainty. This further implies that the analytical method may be also appropriate for future environmental applications.

This is a preview of subscription content,

access via your institution

.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Xem thêm: WEEKEND

References

  1. 1.

    Elsner M, Jochmann M, Hofstetter T, Hunkeler D, Bernstein A, Schmidt T, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403(9):2471–2491. doi:

    10.1007/s00216-011-5683-y

    Article

     

    CAS

     

    Google Scholar

     

  2. 2.

    Thullner M, Centler F, Richnow HH, Fischer A (2012) Quantification of organic pollutant degradation in contaminated aquifers using compound specific stable isotope analysis—review of recent developments. Org Geochem 42(12):1440–1460. doi:

    10.1016/j.orggeochem.2011.10.011

    Article

     

    Google Scholar

     

  3. 3.

    Hofstetter TB, Berg M (2011) Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. TrAC Trends Anal Chem 30(4):618–627. doi:

    10.1016/j.trac.2010.10.012

    Article

     

    CAS

     

    Google Scholar

     

  4. 4.

    Hunkeler D, Meckenstock RU, Sherwood Lollar B, Schmidt TC, Wilson JT (2008) A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis. vol EPA 600/R-08/148. United States Environmental Protection Agency, Oklahoma

  5. 5.

    Aelion CM (2009) Environmental isotopes in biodegradation and bioremediation. CRC

  6. 6.

    Shouakar-Stash O, Drimmie RJ, Zhang M, Frape SK (2006) Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS. Appl Geochem 21(5):766–781. doi:

    10.1016/j.apgeochem.2006.02.006

    Article

     

    CAS

     

    Google Scholar

     

  7. 7.

    Aeppli C, Holmstrand H, Andersson P, Gustafsson OR (2009) Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal Chem 82(1):420–426. doi:

    10.1021/ac902445f

    Article

     

    Google Scholar

     

  8. 8.

    Sakaguchi-Söder K, Jager J, Grund H, Matthäus F, Schüth C (2007) Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. Rapid Commun Mass Spectrom 21(18):3077–3084. doi:

    10.1002/rcm.3170

    Article

     

    Google Scholar

     

  9. 9.

    Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jeannottat S, Sakaguchi-Söder K, Laaks J, Jochmann MA, Cretnik S, Jager J, Haderlein SB, Schmidt TC, Aravena R, Elsner M (2011) Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study. Anal Chem 83(20):7624–7634. doi:

    10.1021/ac200516c

    Article

     

    CAS

     

    Google Scholar

     

  10. 10.

    Hitzfeld KL, Gehre M, Richnow HH (2011) A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur. Rapid Commun Mass Spectrom 25(20):3114–3122. doi:

    10.1002/rcm.5203

    Article

     

    CAS

     

    Google Scholar

     

  11. 11.

    Amrani A, Sessions AL, Adkins JF (2009) Compound-specific δ34S analysis of volatile organics by coupled GC/multicollector-ICPMS. Anal Chem 81(21):9027–9034. doi:

    10.1021/ac9016538

    Article

     

    CAS

     

    Google Scholar

     

  12. 12.

    Gribble G (1999) The diversity of naturally occurring organobromine compounds. Chem Soc Rev 28(5):335–346

    Article

     

    CAS

     

    Google Scholar

     

  13. 13.

    de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46(5):583–624. doi:

    10.1016/s0045-6535(01)00225-9

    Article

     

    Google Scholar

     

  14. 14.

    Alaee M, Arias P, Sjödin A, Bergman Å (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29(6):683–689. doi:

    10.1016/s0160-4120(03)00121-1

    Article

     

    CAS

     

    Google Scholar

     

  15. 15.

    Segev O, Kushmaro A, Brenner A (2009) Environmental impact of flame retardants (Persistence and Biodegradability). Int J Environ Res Public Health 6(2):478–491

    Article

     

    CAS

     

    Google Scholar

     

  16. 16.

    Sylva SP, Ball L, Nelson RK, Reddy CM (2007) Compound-specific 81Br/79Br analysis by capillary gas chromatography/multicollector inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 21(20):3301–3305. doi:

    10.1002/rcm.3211

    Article

     

    CAS

     

    Google Scholar

     

  17. 17.

    Van Acker MRMD, Shahar A, Young ED, Coleman ML (2006) GC/Multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons. Anal Chem 78(13):4663–4667. doi:

    10.1021/ac0602120

    Article

     

    Google Scholar

     

  18. 18.

    Holmstrand H, Unger M, Carrizo D, Andersson P, Gustafsson Ö (2010) Compound-specific bromine isotope analysis of brominated diphenyl ethers using gas chromatography multiple collector/inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 24(14):2135–2142. doi:

    10.1002/rcm.4629

    Article

     

    CAS

     

    Google Scholar

     

  19. 19.

    Carrizo D, Unger M, Holmstrand H, Andersson P, Gustafsson Ö, Sylva SP, Reddy CM (2011) Compound-specific bromine isotope compositions of one natural and six industrially synthesised organobromine substances. Environmental Chemistry 8 (2):127-132. doi:http://dx.doi.org/

    10.1071/EN10090

    Google Scholar

     

  20. 20.

    Gelman F, Halicz L (2010) High precision determination of bromine isotope ratio by GC-MC-ICPMS. Int J Mass Spectrom 289(2–3):167–169. doi:

    10.1016/j.ijms.2009.10.004

    CAS

     

    Google Scholar

     

  21. 21.

    Ronen Z, Abeliovich A (2000) Anaerobic–aerobic process for microbial degradation of tetrabromobisphenol-A. Appl Environ Microbiol 66(6):2372–2377. doi:

    10.1128/aem.66.6.2372-2377.2000

    Article

     

    CAS

     

    Google Scholar

     

  22. 22.

    Iasur-Kruh L, Ronen Z, Arbeli Z, Nejidat A (2010) Characterization of an enrichment culture debrominating tetrabromobisphenol A and optimization of its activity under anaerobic conditions. J Appl Microbiol 109(2):707–715. doi:

    10.1111/j.1365-2672.2010.04699.x

    CAS

     

    Google Scholar

     

  23. 23.

    Arbeli Z, Ronen Z, Díaz-Báez MC (2006) Reductive dehalogenation of tetrabromobisphenol-A by sediment from a contaminated ephemeral streambed and an enrichment culture. Chemosphere 64(9):1472–1478. doi:

    10.1016/j.chemosphere.2005.12.069

    Article

     

    CAS

     

    Google Scholar

     

  24. 24.

    Morasch B, Richnow HH, Vieth A, Schink B, Meckenstock RU (2004) Stable isotope fractionation caused by glycyl radical enzymes during bacterial degradation of aromatic compounds. Appl Environ Microbiol 70(5):2935–2940. doi:

    10.1128/aem.70.5.2935-2940.2004

    Article

     

    CAS

     

    Google Scholar

     

  25. 25.

    Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39(18):6896–6916. doi:

    10.1021/es0504587

    Article

     

    CAS

     

    Google Scholar

     

  26. 26.

    Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50(6):633–657. doi:

    10.1007/s002530051346

    Article

     

    CAS

     

    Google Scholar

     

  27. 27.

    Dolfing J Thermodynamic considerations for dehalogenation. In: In: M.M. Häggblom & I.D. Bossert (eds.), Dehalogenation; microbial processes and environmental applications. Dordrecht etc., Kluwer, 2003, 89-114, 2003

  28. 28.

    Blum DJW, Speece RE A database of chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlations. Journal Name: Research Journal of the Water Pollution Control Federation; (United States); Journal Volume: 63:3:Medium: X; Size: Pages: 198-207

  29. 29.

    Ahn YB, Rhee SK, Fennell DE, Kerkhof LJ, Hentschel U, Häggblom MM (2003) Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba. Appl Environ Microbiol 69(7):4159–4166. doi:

    10.1128/aem.69.7.4159-4166.2003

    Article

     

    CAS

     

    Google Scholar

     

  30. 30.

    Halicz L, Yang L, Teplyakov N, Burg A, Sturgeon R, Kolodny Y (2008) High precision determination of chromium isotope ratios in geological samples by MC-ICP-MS. J Anal At Spectrom 23(12):1622–1627

    Article

     

    CAS

     

    Google Scholar

     

  31. 31.

    Malinovsky D, Stenberg A, Rodushkin I, Andren H, Ingri J, Ohlander B, Baxter DC (2003) Performance of high resolution MC-ICP-MS for Fe isotope ratio measurements in sedimentary geological materials. J Anal At Spectrom 18(7):687–695

    Article

     

    CAS

     

    Google Scholar

     

  32. 32.

    Scott K, Lu X, Cavanaugh C, Liu J (2004) Optimal methods for estimating kinetic isotope effects from different forms of the Rayleigh distillation equation 1. Geochim Cosmochim Acta 68(3):433–442

    Article

     

    CAS

     

    Google Scholar

     

  33. 33.

    Willey JF, Taylor JW (1980) Temperature dependence of bromine kinetic isotope effects for reactions of n-butyl and tert-butyl bromides. J Am Chem Soc 102(7):2387–2391. doi:

    10.1021/ja00527a042

    Article

     

    CAS

     

    Google Scholar

     

  34. 34.

    Numata M, Nakamura N, Koshikawa H, Terashima Y (2002) Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria. Environ Sci Technol 36(20):4389–4394

    Article

     

    CAS

     

    Google Scholar

     

  35. 35.

    Hofstetter TB, Reddy CM, Heraty LJ, Berg M, Sturchio NC (2007) Carbon and chlorine isotope effects during abiotic reductive dechlorination of polychlorinated ethanes. Environ Sci Technol 41(13):4662–4668. doi:

    10.1021/es0704028

    Article

     

    CAS

     

    Google Scholar

     

  36. 36.

    Drenzek NJ, Eglinton TI, Wirsen CO, Sturchio NC, Heraty LJ, Sowers KR, Wu Q, May HD, Reddy CM (2004) Invariant chlorine isotopic signatures during microbial PCB reductive dechlorination. Environ Pollut 128(3):445–448. doi:

    10.1016/j.envpol.2003.09.006

    Article

     

    CAS

     

    Google Scholar

     

Download references

Acknowledgments

The work of A. Bernstein was supported by a generous contribution from Vera Barcza, via the Rosinger-Barcza Family Fund, Toronto, Canada in support of young researchers at the Zuckerberg Institute for Water Research. This research was supported by BMBF-MOST grant for cooperation in Water Technology Research, Ministry of Science and Technology of the State of Israel and FZKForschungszentrum Karlsruhe grant Number WT1101. We thank the three anonymous reviewers of this paper for their useful comments.

Xem thêm: Bảng đầy đủ nhất CÔNG THỨC TÍNH NGUYÊN HÀM-Trung Tâm Gia Sư Trí Tuệ Việt-Trung Tâm Gia Sư Trí Tuệ Việt

Author information

Affiliations

Authors

Corresponding author

Correspondence to

Faina Gelman

.

Additional information

Published in the topical collection Isotope Ratio Measurements: New Developments and Applications with guest editors Klaus G. Heumann and Torsten C. Schmidt.

Xem thêm: SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ-Thư Viện 123

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 278 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bernstein, A., Ronen, Z., Levin, E. et al. Kinetic bromine isotope effect: example from the microbial debromination of brominated phenols. Anal Bioanal Chem 405, 2923–2929 (2013). https://doi.org/10.1007/s00216-012-6446-0

Download citation

  • Received: 16 July 2012

  • Revised: 13 September 2012

  • Accepted: 20 September 2012

  • Published: 07 October 2012

  • Issue Date: March 2013

  • DOI:

    https://doi.org/10.1007/s00216-012-6446-0

Keywords

  • Bromine
  • Isotope enrichment
  • GC-MC-ICPMS
  • CSIA

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button