Kiến thức

Cách viết phương trình tiếp tuyến của đường tròn-Giadinhphapluat.vn

Cách viết phương trình tiếp tuyến của đường tròn

Phương trình tiếp tuyến của đường tròn là mảng kiến thức vô cùng quan trọng các bạn được học trong chương trình Toán phổ thông. Để hiểu sâu hơn về phần kiến thức này và các dạng bài tập thường gặp, các bạn hãy chia sẻ bài viết sau đây của PUD.

Bạn đang xem: Cách viết phương trình tiếp tuyến của đường tròn-Giadinhphapluat.vn

Phương trình tiếp tuyến của đường tròn tại một điểm trên đường tròn

Tiếp tuyến của đường tròn ((C) : (x-a)^{2} + (y-b)^{2Lambda } = R^{2}) tại điểm (M_{0}(x_{0},y_{0})) thuộc đường tròn (C) có phương trình:

((x – a)(x_{0}- a) + (y – b)(y_{0}- b) = R^{2})

Nếu phương trình đường tròn (C) được biểu diễn dưới dạng:

(x^{2}+y^{2}-2ax-2by+c=0) thì phương trình tiếp tuyến đường tròn (C) là:

(xx_{0}+yy_{0}-a(x+x_{0})-b(y+y_{0})+c=0)

Ví dụ 1: Viết phương trình tiếp tuyến của của đường tròn (C) tại điểm M(3;4) biết đường tròn có phương trình là: ((x−1)^{2}+(y−2)^{2}=8)

Hướng dẫn:

Đường tròn (C) có tâm là điểm I(1;2) và bán kính (R=sqrt{8})

Vậy phương trình tiếp tuyến với (C) tại điểm M(3;4) là: (3−1)(x−3)+(4−2)(y−4)=0

(Leftrightarrow) 2x+2y−14=0

Ví dụ 2: Viết phương trình tiếp tuyến của đường tròn ((C) : x^{2} + y^{2} +2x – 4y – 4 = 0) tại điểm (M_{0}(-1;5))

Hướng dẫn:

Dễ thấy phương trình đường tròn (C) được biểu diễn thành:

(x^{2} + y^{2} – 2.(-1).x – 2.2.y = 0)

(Rightarrow) phương trình tiếp tuyến là:

(x.(-1) + y.5 – (-1).(x – 1) – 2.(y + 5) – 4 = 0)

(Leftrightarrow -x + 5y + x – 1 – 2y – 10 – 4 = 0)

(Leftrightarrow y = 5)

Xem thêm: Lưu lượng thở, thể tích phổi và biểu đồ lưu lượng thể tích-Rối loạn phổi

Phương trình tiếp tuyến của đường tròn đi qua một điểm nằm ngoài đường tròn

Cho đường tròn (C) có tâm I, bán kính R và điểm (M(x_{0},y_{0})) nằm ngoài đường tròn (C). Đường thẳng (Delta) đi qua M là tiếp tuyến của (C) khi và chỉ khi: (d(I,Delta ) = R)

tiep-tuyen-duong-tron-di-qua-mot-diem

Cách làm: Viết phương trình của đường (Delta) đi qua (M(x_{0},y_{0}))

(y – y_{0} = m(x – x_{0}) Leftrightarrow mx – y – mx_{0} + y_{0} = 0) (1)

Cho khoảng cách từ tâm I của đường tròn (C) tới (Delta) bằng R

(d(I,Delta )=R)

Ta tính được m, thay m vào (1) ta được phương trình tiếp tuyến.

Chú ý: Ta luôn luôn tìm được hai đường tiếp tuyến đi qua một điểm cho trước nằm ngoài đường tròn.

hai-tiep-tuyen-di-qua-mot-diem-ngoai-duong-tron

Xem thêm: Hội thi tay nghề điều dưỡng, kỹ thuật viên, hộ sinh viên bệnh viện đa khoa Sóc Sơn năm 2020

Phương trình tiếp tuyến song song với đường thẳng có hệ số góc k

Cho đường tròn (C) viết tiếp tuyến (Delta) của (C) biết tiếp tuyến song song với một đường thẳng có hệ số góc k.

Cách làm: Phương trình của đường thẳng (Delta) có dạng:

y = kx + m (m chưa biết)

(Leftrightarrow kx – y + m = 0)

Cho khoảng cách từ tâm I đến (Delta) bằng R: (d(I,Delta )=R) ta tìm được m.

Thay m vừa tìm được vào phương trình y = kx + m ta được phương trình tiếp tuyến cần tìm.

tiep-tuyen-cua-duong-tron-song-song-voi-mot-duong-khac

Xem thêm: Tính chất của Đồng (Cu) theo các phương diện Hóa học, Cơ học và Vật lý

Bài tập vận dụng

Bài 1. Kiểm lại rằng điểm M0(1, -2) ở trên đường (C) có phương trình:

x2 + y2– 10x + 4y + 13 = 0. Tìm phương trình tiếp tuyến với (C) tại M0.

Bài 2. Viết phương trình tiếp tuyến với đường tròn (C): x2 + y2– 4x – 3y = 0 phát xuất từ A(-3, -1).

Bài 3. Cho đường tròn (C) có phương trình: x2 + y2– 6x + 2y + 5 = 0. Tìm phương trình tiếp tuyến với (C) có hệ số góc là -2; định rõ tọa độ các tiếp điểm.

Bài 4. Cho đường tròn (C), điểm A và đường thẳng d.

(C): x2 + y2 + 4x – 8y + 10 = 0,  A(2; 2),    d: x + 2y – 6 = 0

a. Chứng tỏ điểm A ở ngoài (C).

b. Viết phương trình tiếp tuyến của (C) kẻ từ A.

c. Viết phương trình tiếp tuyến của (C) vuông góc với d.

d. Viết phương trình tiếp tuyến của (C) song song với d.

Bài 5. Cho đường tròn (C): x2 + y2 – 6x – 2my + m2 + 4 = 0.

a. Tìm m để từ A(2; 3) có thể kẻ được hai tiếp tuyến với (C).

b. Viết phương trình các tiếp tuyến đó khi m = 6.

Bài tập nâng cao

Bài 1. Cho đường tròn (C) và đường thẳng d:

(C): x2 + y2 – 6x – 2y + 5 = 0,   d: 2x – y + 3 = 0

a. Viết phương trình các tiếp tuyến của (C) tại các giao điểm của (C) với các trục toạ độ.

b. Viết phương trình tiếp tuyến của (C) vuông góc với d.

c. Viết phương trình tiếp tuyến của (C) song song với d.

Bài 2. Cho đường tròn (C), điểm A và đường thẳng d.

(C): x2 + y2 – 4x – 6y – 12 = 0,        A(-7; 7),          d: 3x + 4y – 6 = 0

a. Chứng tỏ điểm A ở ngoài (C).

b. Viết phương trình tiếp tuyến của (C) kẻ từ A.

c. Viết phương trình tiếp tuyến của (C) vuông góc với d.

d. Viết phương trình tiếp tuyến của (C) song song với d.

Bài 3. Cho hai điểm A(1; 2), B(3; 4) và đường thẳng d: y = -3 – 3x

a. Viết phương trình các đường tròn (C1) và (C2) qua A, B và tiếp xúc với d.

b. Viết phương trình tiếp tuyến chung (khác d) của hai đường tròn đó.

Trên đây là tổng hợp cách viết phương trình tiếp tuyến của đường tròn do PUD cung cấp. Hi vọng qua những chia sẻ chi tiết từ bài viết, các bạn đã nắm vững hơn phần kiến thức quan trọng này. Chúc các bạn học tốt nhé !

  • Chia sẻ thêm: Chuyên đề về Phương trình đường thẳng trong không gian

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button