Kiến thức

Cho HPT với tham số m: mx-y = 2m, x-my = 1+m. Tìm m để hpt có nghiệm duy nhất

Cho HPT với tham số m: mx – y = 2m, x- my = 1+m. Tìm m để hpt có nghiệm duy nhất

Hệ phương trình là phần học khó, có nhiều dạng toán đa dạng. Trong bài viết này, Hoatieu.vn gửi đến bạn đọc bài toán tìm tham số để

Hệ phương trình có nghiệm nguyên, hệ phương trình có nghiệm duy nhất

Tìm nghiệm HPT theo yêu cầu

  • 1. Cho hpt với tham số m mx-y = 2m x-my = 1+m

  • 2. Lý thuyết về Hệ phương trình

    • 2.1 Khái niệm HPT

    • 2.2 Minh họa hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn

    • 2.3 Hệ phương trình tương đương

  • 3. Lý thuyết tìm tham số để HPT có nghiệm nguyên, nghiệm duy nhất

    • 3.1 Tìm tham số để HPT có nghiệm duy nhất

    • 3.2 Tìm tham số để HPT có nghiệm nguyên

  • 4. Các dạng toán HPT thường gặp

    • 4.1 Tìm giá trị của tham số để hệ phương trình có số nghiệm yêu cầu

    • 4.2 Kiểm tra cặp số cho trước có là nghiệm của hệ phương trình 

    • 4.3 Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp đồ thị

1. Cho hpt với tham số m mx-y = 2m x-my = 1+m

a. Tìm m để hpt có nghiệm duy nhất

b. Tìm m để hpt có nghiệm nguyên

a. Để HPT có nghiệm duy nhất thì:

frac{m}{1}nefrac{-1}{-m} => m ≠ 1 và -1

Vậy để HPT có nghiệm duy nhất thì m ≠  -1 và 1

b. Để HPT có nghiệm nguyên thì:

x = frac{2m + y}{m}

Thay x vào phương trình thứ 2 ta có:

frac{2m + y}{m } - my = m +1

2m + y – m^2y = m^2 + m

m +y- m^2y-m^2 = 0

y =- frac{m}{m + 1}

=> x = 2m + 1

=> Để HPT có nghiệm nguyên thì:

-frac{m}{m+1} nguyên và 2m + 1 nguyên

2. Lý thuyết về Hệ phương trình

Cho hpt với tham số m mx-y = 2m x-my = 1+m

Bạn đang xem: Cho HPT với tham số m: mx-y = 2m, x-my = 1+m. Tìm m để hpt có nghiệm duy nhất

2.1 Khái niệm HPT

HPT có dạng left{begin{matrix} ax + by = c \a'x+b'y=C' end{matrix}right.

Trong đó: a,a’,b,b’,c,c’ là những số thực cho trước; x,y là ẩn số

Nếu hai phương trình của hệ có nghiệm chung thì nghiệm chung ấy gọi là nghiệm của hệ phương trình (I). Trái lại, nếu hai phương trình không có nghiệm chung thì ta nói hệ (I) là vô nghiệm.

Giải hệ phương trình là tìm tất cả các nghiệm của nó.

2.2 Minh họa hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn

Đối với hệ phương trình (I), ta gọi (d) là đường thẳng biểu diễn tập nghiệm của phương trình ax + by = cax + by = c và (d′) là đường thẳng biểu diễn tập nghiệm của phương trình a′x + b′y = c′a′x + b′y = c′.

  • Nếu (d) cắt (d′)thì hệ (I) có một nghiệm duy nhất.
  • Nếu (d)song song với (d′) thì hệ (I) vô nghiệm.
  • Nếu (d) trùng với (d′) thì hệ (I) có vô số nghiệm

Xem thêm: Cách vẽ Parabol-Máy Phay, Tiện CNC

2.3 Hệ phương trình tương đương

Hai hệ phương trình được gọi là tương đương nếu chúng có cùng tập nghiệm

3. Lý thuyết tìm tham số để HPT có nghiệm nguyên, nghiệm duy nhất

3.1 Tìm tham số để HPT có nghiệm duy nhất

left{begin{matrix} ax + by = c \a'x+b'y=C' end{matrix}right. có nghiệm duy nhất thì:

frac{a}{a'}+frac{b}{b'} khác 0

Xem thêm: Ứng dụng phương pháp tán xạ tia X góc nhỏ đánh giá ảnh hưởng thăng giáng mật độ điện tử đến các cấu trúc vi mô của màng dẫn proton trong pin nhiên liệu.

3.2 Tìm tham số để HPT có nghiệm nguyên

Bước 1: Biểu diễn x, y theo tham số a,b

Bước 2: x,y nguyên thì tham số có được từ bước 1 cũng nguyên => Giải theo dạng toán chia hết

Ví dụ: x =frac{a+2}{a} => Để x nguyên thì frac{a + 2}{a} nguyên <=> 1 + frac{2}{a} nguyên

=> a là ước của 2.

=> a có thể là 1,-1,2,-2

4. Các dạng toán HPT thường gặp

4.1 Tìm giá trị của tham số để hệ phương trình có số nghiệm yêu cầu

Xét HPT :left{begin{matrix} ax + by = c \a'x+b'y=C' end{matrix}right.

=> HPT có nghiệm duy nhất khi:

frac{a}{a'}+frac{b}{b'} khác 0

HPT vô nghiệm khi:

frac{a}{a'} = frac{b}{b' } khác frac{c}{c'}

HPT có vô số nghiệm khi:

frac{a}{a'}=frac{b}{b'}=frac{c}{c'}

Xem thêm: GCD (Hàm GCD)-Hỗ trợ Office

4.2 Kiểm tra cặp số cho trước có là nghiệm của hệ phương trình

Cặp số cho trước là nghiệm của HPT khi và chỉ khi nó đồng thời thỏa mãn 2 phương trình của hệ

4.3 Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp đồ thị

Để giải dạng toán này, ta thực hiện theo các bước sau:

Bước 1. Vẽ hai đường thẳng d:ax + by = c và d’:a’x + b’y = c’ trên cùng một hệ trục tọa độ. Hoặc tìm tọa độ giao điểm củ hai đường thẳng.

Bước 2. Xác định nghiệm của hệ phương trình dựa vào đồ thị đã vẽ ở bước 1 (hay nghiệm của hệ phương trình chính là tọa độ giao điểm của hai đường thẳng).

Trên đây, Hoatieu.vn đã gửi đến bạn đọc một số bài toán dạng Tìm tham số để Hệ phương trình có nghiệm theo yêu cầu. Mời các bạn đọc thêm các bài viết liên quan tại mảng

Tài liệu

Các bài viết liên quan:

  • Tam giác đồng dạng

  • Một khu vườn hình chữ nhật có chiều rộng bằng 2/3 chiều dài và diện tích 150m2. Tính chu vi khu vườn

  • Giải toán bằng cách lập hệ phương trình

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button