Kiến thức

Công thức tính đường cao trong tam giác-Công thức tính đường cao trong tam giác Toán THCS, THPT

Bạn đang xem: Công thức tính đường cao trong tam giác-Công thức tính đường cao trong tam giác Toán THCS, THPT

Công thức tính đường cao trong tam giác

1 1.106

Tải về

Bài viết đã được lưu

Công thức tính đường cao trong tam giác – Cách tính đường cao trong tam giác

Công thức tính đường cao trong tam giác được VnDoc sưu tầm và đăng tải. Để giải được các bài toán về đường cao trong tam giác, việc đầu tiên mọi người cần phải nắm rõ được công thức tính đường cao. Mỗi loại tam giác lại có một công thức tính đường cao riêng biệt, điều này khiến nhiều người gặp khó khăn khi giải bài tập toán. Để nắm rõ hơn về công thức tính đường cao trong tam giác, mời mọi người cùng theo dõi bài viết dưới đây nhé.

  • Công thức tính độ dài đường trung tuyến

  • Công thức tính đường chéo hình chữ nhật

Ngoài ra,

VnDoc.com

đã thành lập group chia sẻ tài liệu học tập THCS miễn phí trên Facebook:

Tài liệu học tập lớp 9

. Mời các bạn học sinh tham gia nhóm, để có thể nhận được những tài liệu mới nhất.

Các bạn đang cần tính đường cao trong tam giác nhưng các bạn lại không nhớ công thức tính đường cao trong tam giác. Vậy các bạn hãy cùng tham khảo bài viết dưới đây để biết công thức và cách tính đường cao trong tam giác.

Công thức tính đường cao trong tam giác

Dưới đây là công thức tính đường cao trong tam giác, mời các bạn cùng theo dõi.

Đường cao trong tam giác?

Đường cao của tam giác là đoạn vuông góc kẻ từ một đỉnh đến cạnh đối diện. Cạnh đối diện này được gọi là đáy ứng với đường cao. Độ dài của đường cao là khoảng cách giữa đỉnh và đáy.

Công thức tính đường cao trong tam giác

Có nhiều cách giúp các bạn tính đường cao, cách đơn giản tính đường cao trong tam giác là sử dụng công thức Heron:

{h_a} = 2frac{{sqrt {pleft( {p - a} right)left( {p - b} right)left( {p - c} right)} }}{a}

Với a, b, c là độ dài các cạnh; ha là đường cao được kẻ từ đỉnh A xuống cạnh BC; p là nửa chu vi:

p = frac{{left( {a + b + c} right)}}{2}

Công thức tính đường cao trong tam giác

Công thức tính đường cao trong tam giác đều

Giả sử tam giác đều ABC có độ dài cạnh bằng a như sau:

Công thức tính đường cao trong tam giác

Công thức tính đường cao: h = afrac{{sqrt 3 }}{2}

Trong đó: h là đường cao của tam giác đều; a là độ dài cạnh của tam giác đều.

Công thức tính đường cao trong tam giác vuông

Giả sử có tam giác vuông ABC vuông tại A như hình sau:

Công thức tính đường cao trong tam giác

Công thức tính cạnh và đường cao trong tam giác vuông:

1. {a^2} = {b^2} + {c^2}

2. {b^2} = a.b' và {c^2} = a.c'

3. ah = bc

4. {h^2} = b'.c'

5. frac{1}{{{h^2}}} = frac{1}{{{b^2}}} + frac{1}{{{c^2}}}

Trong đó: a, b, c lần lượt là các cạnh của tam giác vuông như hình trên;

b’ là đường chiếu của cạnh b trên cạnh huyền; c’ là đường chiếu của cạnh c trên cạnh huyền;

h là chiều cao của tam giác vuông được kẻ từ đỉnh góc vuông A xuống cạnh huyền BC.

Như vậy các bạn có thể dựa vào các công thức cạnh và đường cao trong tam giác vuông ở trên để giải quyết các bài toán.

Công thức tính đường cao trong tam giác cân

Giả sử các bạn có tam giác ABC cân tại A, đường cao AH vuông góc tại H như sau:

Công thức tính đường cao trong tam giác

Công thức tính đường cao AH:

Vì tam giác ABC cân tại A nên đường cao AH đồng thời là đường trung tuyến nên:

Rightarrow HB = HC = frac{{BC}}{2}

Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:

A{H^2} + B{H^2} = A{B^2}

Rightarrow A{H^2} = A{B^2} - B{H^2}

Trên đây VnDoc đã chia sẻ công thức tính đường cao trong tam giác, các bạn chỉ cần tính các thành phần chưa biết trong công thức tính đường cao trong tam giác là có thể tính được đường cao trong tam giác. Chúc các bạn thành công!

…………………………………..

Ngoài

Công thức tính đường cao trong tam giác

. Mời các bạn học sinh còn có thể tham khảo thêm

Giải bài tập Toán lớp 9

,

Giải vở bài tập Toán 9

,

soạn bài 9

hoặc

đề thi học học kì 1 lớp 9

,

đề thi học học kì 2 lớp 9

các

môn Toán

,

Văn

,

Anh

,

Hóa

, Lý, Địa, Sinh mà chúng tôi đã sưu tầm và chọn lọc. Với đề thi học kì 2

lớp 9

này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn học tốt

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button