Kiến thức

Giải bài tập Đại số lớp 10-Chương 4: Bất đẳng thức. Bất phương trình-Bài 3: Dấu của nhị thức bậc nhất

TOÁN LỚP 10

 

Giải bài tập Đại số 10

 

LỚP 10

 

A. KIẾN THỨC CƠ BẢN

  1. Định lý về dấu của nhị thức bậc nhất

a) Dạng: f(x) = ax + b (a, b : hằng; a + 0)

b) Dấu của f(x)

c, Bảng xét dấu

Cách nhớ: phải cùng, trái khác

2. Xét dấu của tích, thương của các nhị thức bậc nhất.

i) Phân tích thành tích hoặc thương cả tử lẫn mẫu của biểu thức đã cho.

(ii) Tìm nghiệm của mỗi nhị thức bậc nhất, rồi xét dấu của mỗi nhị thức đó

3. Áp dụng giải bất phương trình có dấu | |

i, Bước 1: Lọai bỏ dấu | | bằng cách:

f(x) ≤ a (a > 0) ⇔ -a ≤ f(x) ≤ a

|f(x)| ≥ a (a > 0) ⇔ f(x) ≤ -a hay f(x) ≥ a

ii, Bước 2: Thu gọn bất phương trình

iii, Bước 3: Giải bất phương trình

Nguồn website giaibai5s.com

  1. KIẾN THỨC CƠ BẢN 
  2. Định lý về dấu của nhị thức bậc nhất
  3. a) Dạng: f(x) = ax + b (a, b : hằng; a + 0) 
  4. b) Dấu của f(x) 

Nhị thức f(x) = ax + b có giá trị cùng dấu với hệ số a khi

;+ a); trái dấu với hệ số a khi x + (

XE

a

|

  1. c) Bảng xét dấu

b

-00

..

+50

f(x) = ax + b | trái dấu a 0 cùng dấu a | Cách nhớ: phải cùng, trái trái 

  1. Xét dấu của tích, thương của các nhị thức bậc nhất.
  2. i) Phân tích thành tích hoặc thương cả tử lẫn mẫu của biểu thức đã cho. (ii) Tìm nghiệm của mỗi nhị thức bậc nhất, rồi xét dấu của mỗi nhị thức đó

iii) Lấy kết quả chung (Nhớ: dấu của AB và dấu của – là như nhau)

  1. Áp dụng: Giải bất phương trình có dấu || i) Bước 1: Loại bỏ dấu || bằng cách:
  • f(x) = a (a > 0) -a s f(x) sa • [f(x)| 2 a (a > 0) f(x) s-a hay f(x) 2 a

Bước 2: ii) Thu gọn bất phương trình

Bước 3: ” iii) Giải bất phương trình. B. BÀI TẬP 1. Xét dấu các biểu thức a) f(x) = (2x – 1)(x + 3);

  1. b) f(x) = (-3x – 3)(x + 2)(x + 3);

. d) f(x) = 4×2 – 1. 3x + 1 2

Giải a) Bảng xét dấu :

  1. c) fir) –

+

0

| 2x – 1 . L –

x + 3 | f(x) 1 + 0 – Kết quả : • f(x) > 0 ° x < -3 v

0

X

  • f(x) = 0

x = -3 V X

  • f(x) <0

-3

<

X

  1. b) Bảng xét dấu

.

-3

to la

to

+

+

1+

1

+ + –

-3x – 3

X + 2 * x + 3

– f(x) + Kết quả : • f(x) > 0

f(x) = 0

  • f(x) < 0 -4 3

3x +1 2-X Bảng xét dấu:

х 1-00

– 0 + 0 + T. +

0 – 0 + 0 – 0 < -3 v-2 < x < -1 .

x = -3vx= -2 vx = -1 -3 < x < -2 vx>-1 .

-5x – 11 (3x + 1)(-x + 2)

  1. c) f(x) = 4

2

+00

|

+ –

0 |

– –

0

– +

I

– +

-5x – 11 3x + 1 -x + 2

f(x)

+

<

X

<

V

x

>

– 0 + – + Kết quả : • fx) 20 = x 3 x > 2

  • f(x) = 0 x=-11 • fx) <0 <x< 1 <x<2 • f(x) không xác định ở x= v x = 2
  1. d) f(x) = 4×2 – 1 = (2x – 1)(2x + 1)

Bảng xét dấu:

+oc

1

+

-.0 + L – 0

+ +

+

2x – 1 – 2x + 1

– 0 [ f(x) + 0 Kết quả : • f(x) > 0 = x

L..

+

V

x

>

X

;

  • f(x) = 0 -> x= x= • f(x) < 0 <x<
  1. Giải các bất phương trình

25

X-1

x +1

(x – 1)

(X-112;

3

1 – x

2

– x +4

d)

+

x2 – 3x + 1

x2 -1

2

x + 3

Giải

NI

IA

<

0

anmelden

4x-2-5x +5 (x – 1)(2x – 1)

50

-1

2x-1

>f(x)=_

-x+ 3

SO

*

(x – 1)(2x – 1) Bảng xét dấu : 1 x -00

1

3

+00

+

Il +

+

+

+

+

-x + 3 X-1

– 0 + 2x – 1

0 + + + f(x)

|| – || +0 – Từ bảng xét dấu ta thấy : • f(x) < 0 1<x<1Vx>3 ; • f(x) = 0 x = 3 Vậy tập nghiệm của bất phương trình: < x < 1;x 23

X

x + 1) <0

b)

1

oso

(x – 1)2 – (x + 1)

+1)(x – 1)2 50

X

X +1 (x – 1)2

1 (x – 1) (x + 1)(x – 1)2 .x2 – 2x + 1 – X-1 . x(x – 3)

(x + 1)(x – 1) f(x) = x(x – 3) <0 (x + 1)

x +1 Bảng xét dấu.

-00 -1 0 3 tool x | – : – 0 + 1 + X-3 X + 1

0 + L + L + f(x)

– 1 + 0 = 0 + Từ bảng xét dấu ta thấy f(x) < 0 6 x <-1v 0 < x <3 Vậy tập nghiệm của bất phương trình: x = -1 ; 0 < x < 3 ; x + 1 1 2 3 X X + 4 X + 3 (x + 4)(x + 3) + 2x(x + 3) – 3x(x +4)

x(x + 4)(x+3)

+

= f(x) =_X+12

<0 x(x + 3)(x + 4) Bảng xét dấu :

– -12 x + 12

+00

1

+

i

X + 4 X + 3 f(x)

+INTU

+

1

1

1 –

0

+

1 +

+

Từ bảng xét dấu ta thấy f(x) < 0 -12 < x < -4 hoặc – 3 < x < 0

Vậy tập nghiệm của bất phương trình: -12 < x < -4 hoặc – 3 < x < 0 d) x2 – 3x +11

A

x2 – 3x + 1 – x2 + 1

x -1 Bảng xét dấu

.-3x + 2 f(x) = –

(x – 1)(x + 1)

so

-1

1.

+00

1 0

Lil + +

+

+

-3x + 2 + + 0 – X – 1 1 – 1 – 1 –

x + 1 L f(x) | + + -.O . + Từ bảng xét dấu ta thấy f(x) < 0 8 -1

+

v

-1<x<2

| Vậy tập nghiệm của bất phương trình : -1 < x <

  1. Giải các bất phương trình a) 15x – 412 6;

| Giải [(5x -4 26 (x22

x22

  1. a) 15x – 412601

1-5x +4 26

lebovi

X

VI

orino

V

Vậy, x R 22.

V

X

.

.

.

—-

© 2/x + 2 >|x – 11 > 2x + 2 – x – 1) >0 (1) Bảng xét dấu :

1-00 -2 1x + 21 -X – 2 x + 2

x-11 -x + 1 -x + 1 Vế trái của (1) |

-x>5 + 1 >0

ox<-5 Tox>-1 Nghiệm X<-5 -1<x< 1

x < –5 Vậy, nghiệm của (1) :-1 < x <1 .

x>1 .

1 . too

x + 2 0 X-1 L x + 5 > 0

ox> -5 ! X>1

Giải bài tập Đại số lớp 10 – Chương 4: Bất đẳng thức. Bất phương trình – Bài 3: Dấu của nhị thức bậc nhất

5 (100%) 1 vote

Bạn đang xem: Giải bài tập Đại số lớp 10-Chương 4: Bất đẳng thức. Bất phương trình-Bài 3: Dấu của nhị thức bậc nhất

Những bài viết liên quan

  • Giải bài tập Đại số lớp 10 – Chương 4: Bất đẳng thức. Bất phương trình – Bài 5: Dấu của tam thức bậc hai

  • Giải bài tập Đại số lớp 10 – Chương 4: Bất đẳng thức. Bất phương trình – Bài 2: Bất phương trình và hệ bất phương trình một ẩn

  • Giải bài tập Đại số lớp 10 – Chương 3: Phương trình và hệ phương trình – Bài 1: Đại cương về phương trình

  • Giải bài tập Đại số lớp 10 – Chương 4: Bất đẳng thức. Bất phương trình – Bài 1: Bất đẳng thức

  • Giải bài tập Đại số lớp 10 – Chương 4: Bất đẳng thức. Bất phương trình – Bài 4: Bất phương trình bậc nhất hai ẩn

  • Giải bài tập Đại số lớp 10 – Chương 3: Phương trình và hệ phương trình – Bài 3: Phương trình và hệ phương trình bậc nhất nhiều ẩn

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button