Kiến thức

Cách giải mọi dạng bài cực trị của hàm số bậc 3-Tự Học 365

Bạn đang xem: Cách giải mọi dạng bài cực trị của hàm số bậc 3-Tự Học 365

Cách giải mọi dạng bài cực trị của hàm số bậc 3

Cách giải mọi dạng bài cực trị của hàm số bậc 3

Bài tập vận dụng!

CỰC TRỊ CỦA HÀM SỐ BẬC 3 – CÁCH GIẢI MỌI BÀI TẬP

Phương pháp giải bài tập tìm cực trị của hàm số bậc 3

Xét hàm số $y=a{{x}^{3}}+b{{x}^{2}}+cx+dleft( ane 0 right).$

Ta có: $y’=3a{{x}^{2}}+2bx+c.$ Khi đó:

Hàm số có hai điểm cực trị (có cực đại cực tiểu) khi $y’=0$ có hai nghiệm phân biệt $Leftrightarrow Delta {{‘}_{y’}}>0.$

Hàm số không có cực trị khi $y’=0$ vô nghiệm hoặc có nghiệm kép $Leftrightarrow Delta {{‘}_{y’}}le 0.$

Chú ý:

– Trong trường hợp hệ số $a$ chứa tham số ta cần xét $a=0.$

– Đối với hàm số bậc 3 ta luôn có ${{y}_{CD}}>{{y}_{CT}}$ và:

+) Nếu $a>0$ thì ${{x}_{CD}}<{{x}_{CT}}.$


+) Nếu $a<0$ thì ${{x}_{CD}}>{{x}_{CT}}.$

Khi $y’=3a{{x}^{2}}+2bx+c=0$ có hai nghiệm phân biệt ta gọi $Aleft( {{x}_{1}};{{y}_{1}} right)$ và $Bleft( {{x}_{2}};{{y}_{2}} right)$ là tọa độ hai điểm cực trị thì theo định lý Viet ta có: $left{ begin{matrix}   {{x}_{1}}+{{x}_{2}}=frac{-2b}{3a}  \   {{x}_{1}}{{x}_{2}}=frac{c}{3a}text{     }  \end{matrix} right..$

Thực hiện phép chia đa thức $y$ cho $y’$ ta được $y=y’.gleft( x right)+hleft( x right).$

Khi đó ${{y}_{1}}=y’left( {{x}_{1}} right).gleft( {{x}_{1}} right)+hleft( {{x}_{1}} right)=hleft( {{x}_{1}} right)$ và ${{y}_{2}}=y’left( {{x}_{2}} right).gleft( {{x}_{2}} right)+hleft( {{x}_{2}} right)=hleft( {{x}_{2}} right)$

Do đó $left{ begin{matrix}   {{y}_{1}}=hleft( {{x}_{1}} right)  \   {{y}_{2}}=hleft( {{x}_{2}} right)  \end{matrix} right..$

Vậy phương trình đường thẳng đi qua điểm cực đại và cực tiểu của đồ thị hàm số có dạng $y=hleft( x right).$

Luyện bài tập vận dụng tại đây!

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button