Kiến thức

Phương pháp giải phương trình bậc ba, bậc bốn đặc biệt MÔN TOÁN Lớp 10-Toan123.vn

Bạn đang xem: Phương pháp giải phương trình bậc ba, bậc bốn đặc biệt MÔN TOÁN Lớp 10-Toan123.vn

Phương pháp giải phương trình bậc ba, bậc bốn đặc biệt

1. Phương trình trùng phương

– Là phương trình có dạng (a{x^4} + b{x^2} + c = 0left( {a ne 0} right),,,,,,,,,left( * right))

– Phương pháp:

+) Đặt (t = {x^2}left( {t ge 0} right)) thì (left( * right) Leftrightarrow a{t^2} + bt + c = 0,,,,,,,,,left( {**} right))

+) Để xác định số nghiệm của $( * ),$ ta dựa vào số nghiệm của $( *  * )$ và dấu của chúng, cụ thể:

$ bullet $ Phương trình $( * )$ vô nghiệm ( Leftrightarrow left( {**} right)) vô nghiệm hoặc có nghiệm kép âm hoặc có hai nghiệm phân biệt âm.

$ bullet $ Phương trình $( * )$ có $1$ nghiệm ( Leftrightarrow left( {**} right)) có nghiệm kép ({t_1} = {t_2} = 0) hoặc (left( {**} right)) có (1) nghiệm bằng (0), nghiệm còn lại âm.

$ bullet $ Phương trình $( * )$ có $2$ nghiệm phân biệt ( Leftrightarrow left( {**} right)) có nghiệm kép dương hoặc (left( {**} right)) có (2) nghiệm trái dấu.

$ bullet $ Phương trình $( * )$ có $3$ nghiệm $ Leftrightarrow ( *  * )$ có $1$ nghiệm bằng $0$ và nghiệm còn lại dương.

$ bullet $ Phương trình $( * )$ có $4$  nghiệm $ Leftrightarrow ( *  * )$ có $2$ nghiệm dương phân biệt.

2. Một số dạng phương trình bậc bốn quy về bậc hai

Loại 1:  $a{x^4} + b{x^3} + c{x^2} + dx + e = 0$ với $dfrac{e}{a} = {left( {dfrac{d}{b}} right)^2} ne 0$

 Phương pháp giải:

– Bước 1: Chia hai vế cho ${x^2} ne 0$

– Bước 2: Đặt $t = x + dfrac{alpha }{x} Rightarrow {t^2} = {left( {x + dfrac{alpha }{x}} right)^2}$ với $alpha  = dfrac{d}{b}$ và thay vào phương trình.

Loại 2:  $(x + a)(x + b)(x + c)(x + d) = e$ với $a + c = b + d$

 Phương pháp giải:

– Bước 1: Biến đổi:

$left[ {(x + a)(x + c)} right] cdot left[ {(x + b)(x + d)} right] = e Leftrightarrow left[ {{x^2} + (a + c)x + ac} right] cdot left[ {{x^2} + (b + d)x + bd} right] = e$

– Bước 2: Đặt $t = {x^2} + (a + c)x$ và thay vào phương trình.

Loại 3:  $(x + a)(x + b)(x + c)(x + d) = e{x^2}$ với $a.b = c.d.$

 Phương pháp giải:

– Bước 1: Đặt $t = {x^2} + ab + dfrac{{a + b + c + d}}{2} cdot x$

– Bước 2: Phương trình$ Leftrightarrow left( {t + dfrac{{a + b – c – d}}{2} cdot x} right) cdot left( {t – dfrac{{a + b – c – d}}{2} cdot x} right) = e{x^2}$ (có dạng đẳng cấp)

Loại 4:  ${(x + a)^4} + {(x + b)^4} = c$

Phương pháp giải:

– Bước 1: Đặt $x = t – dfrac{{a + b}}{2} Rightarrow {(t + alpha )^4} + {(t – alpha )^4} = c$ với $alpha  = dfrac{{a – b}}{2} cdot $

– Bước 2: Giải phương trình trên tìm (t) rồi suy ra (x).

Loại 5:  ${x^4} = a{x^2} + bx + c,,,,,left( 1 right)$

Phương pháp giải:

– Bước 1: Tạo ra dạng ${A^2} = {B^2}$ bằng cách thêm hai vế cho một lượng $2k.{x^2} + {k^2}$

– Bước 2: Phương trình (1) tương đương:

${({x^2})^2} + 2k{x^2} + {k^2} = (2k + a){x^2} + bx + c + {k^2} Leftrightarrow {({x^2} + k)^2} = (2k + a){x^2} + bx + c + {k^2}.$

– Bước 3: Cần vế phải có dạng bình phương $ Rightarrow left{ begin{array}{l}2k + a > 0\{Delta _{VP}} = {b^2} – 4(2k + a)(c + {k^2}) = 0end{array} right. Rightarrow k = ?$

Loại 6:  ${x^4} + a{x^3} = b{x^2} + cx + d,,,,,left( 2 right)$

Phương pháp giải:

– Bước 1: Tạo ${A^2} = {B^2}$ bằng cách thêm ở vế trái 1 biểu thức để tạo ra dạng bình phương: ${left( {{x^2} + dfrac{a}{2}x + k} right)^2} = {x^4} + a{x^3} + left( {2k + dfrac{{{a^2}}}{4}} right){x^2} + kax + {k^2}.$

Do đó ta sẽ cộng thêm hai vế của phương trình (2) một lượng: $left( {2k + dfrac{{{a^2}}}{4}} right){x^2} + kax + {k^2},$ thì phương trình

$(2) Leftrightarrow {left( {{x^2} + dfrac{a}{2}x + k} right)^2} = left( {2k + dfrac{{{a^2}}}{4} + b} right){x^2} + (ka + c)x + {k^2} + d.$

– Bước 2: Cần vế phải có dạng bình phương nên phải có số $k$ thỏa:

$left{ begin{array}{l}2k + dfrac{{{a^2}}}{4} + b > 0\{Delta _{VP}} = {(ka + c)^2} – 4left( {2k + dfrac{{{a^2}}}{4} + b} right)({k^2} + d) = 0end{array} right. Rightarrow k = ?$

3. Giải phương trình bậc ba bằng lược đồ Hoocner

Khi gặp bài toán chứa tham số trong phương trình bậc ba, ta thường dùng nguyên tắc nhẩm nghiệm sau đó chia Hoocner.

Nguyên tắc nhẩm nghiệm:

$ bullet $    Nếu tổng các hệ số bằng $0$ thì phương trình sẽ có $1$ nghiệm $x = 1.$

$ bullet $    Nếu tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ thì PT có $1$ nghiệm $x =  – 1.$

$ bullet $    Nếu phương trình chứa tham số, ta sẽ chọn nghiệm $x$ sao cho triệt tiêu đi tham số $m$ và thử lại tính đúng sai.

Chia Hoocner: đầu rơi – nhân tới – cộng chéo.

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button