Kiến thức

Sách Giải Bài Tập Toán Lớp 12 Bài 1 : Nguyên Hàm

Chương 3: Nguyên hàm – Tích phân và ứng dụng

– Chọn bài -Bài 1 : Nguyên hàmBài 2 : Tích phânBài 3 : Ứng dụng của tích phân trong hình họcÔn tập chương 3 giải tích 12

  • Sách giáo khoa đại số và giải tích 12

  • Sách giáo khoa hình học 12

  • Sách giáo khoa giải tích 12 nâng cao

  • Sách giáo khoa hình học 12 nâng cao

  • Giải Sách Bài Tập Toán Lớp 12

  • Sách Giáo Viên Giải Tích Lớp 12

  • Sách Giáo Viên Hình Học Lớp 12

  • Sách Giáo Viên Giải Tích Lớp 12 Nâng Cao

  • Sách Giáo Viên Hình Học Lớp 12 Nâng Cao

  • Giải Toán Lớp 12 Nâng Cao

  • Sách Bài Tập Giải Tích Lớp 12

  • Sách Bài Tập Giải Tích Lớp 12 Nâng Cao

  • Sách Bài Tập Hình Học Lớp 12 Nâng Cao

  • Sách Bài Tập Hình Học Lớp 12

Sách giải toán 12 Bài 1 : Nguyên hàm giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 12 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 93: Tìm hàm số F(x) sao cho F’(x) = f(x) nếu:

a) f(x) = 3x2 với x ∈ (-∞; +∞);

b) f(x) = 1/(cos⁡x)2 với x ∈ ((-π)/2; π/2).

Lời giải:

F(x) = x3 vì (x3)’ = 3x2

F(x) = tanx vì (tanx)’ = 1/(cos⁡x)2 .

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 93: Hãy tìm thêm những nguyên hàm khác của các hàm số nêu trong Ví dụ 1.

Lời giải:

(x) = x2 + 2 do (F(x))’=( x2 + 2)’ = 2x + 0 = 2x. Tổng quát F(x) = x2 + c với c là số thực.

F(x) = lnx + 100, do (F(x))’ = 1/x , x ∈ (0,+∞). Tổng quát F(x)= lnx + c, x ∈ (0,+∞) và với c là số thực.

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 93: Hãy chứng minh Định lý 1.

Lời giải:

Vì F(x) là nguyên hàm của f(x) trên K nên (F(x))’ = f(x). Vì C là hằng số nên (C)’ = 0.

Ta có:

(G(x))’ = (F(x) + C)’ = (F(x))’ + (C)’ = f(x) + 0 = f(x)

Vậy G(x) là một nguyên hàm của f(x).

Lời giải:

Ta có [∫f(x) ± ∫g(x)]’= [∫f(x) ]’± [∫g(x) ]’ = f(x)±g(x).

Vậy ∫f(x) ± ∫g(x) = ∫[f(x)±g(x)].

Lời giải:

f’(x) f(x) + C
0 C
αxα -1 xα + C
1/x (x ≠ 0) ln⁡(x) + C nếu x > 0, ln⁡(-x) + C nếu x < 0.
ex ex + C
axlna (a > 1, a ≠ 0) ax + C
Cosx sinx + C
– sinx cosx + C
1/(cosx)2 tanx + C
(-1)/(sinx)2 cotx + C

a) Cho ∫(x – 1)10 dx. Đặt u = x – 1, hãy viết (x – 1)10dx theo u và du.

b)∫Giải bài tập Toán 12 | Giải Toán lớp 12 Tra Loi Cau Hoi Toan 12 Giai Tich Bai 1 Trang 98 . Đặt x = et, hãy viết Giải bài tập Toán 12 | Giải Toán lớp 12 Tra Loi Cau Hoi Toan 12 Giai Tich Bai 1 Trang 98 theo t và dt.

a) Ta có (x – 1)10dx = u10 du (do du = d(x – 1) = dx.

b) Ta có dx = d(et) = et dt, do đó Giải bài tập Toán 12 | Giải Toán lớp 12 Tra Loi Cau Hoi Toan 12 Giai Tich Bai 1 Trang 98 1

Hãy tính ∫ (xcosx)’ dx và ∫ cosxdx. Từ đó tính ∫ xsinxdx.

Lời giải:

Ta có ∫ (xcosx)’dx = (xcosx) và ∫ cosxdx = sinx. Từ đó

∫ xsinxdx = – ∫ [(xcosx)’ – cosx]dx = -∫ (xcosx)’dx + ∫ cosxdx = – xcosx + sinx + C.

∫ P(x)ex dx ∫ P(x)cosxdx ∫ P(x)lnxdx
P(x)
exdx

Lời giải:

∫ P(x)ex dx ∫ P(x)cosxdx ∫ P(x)lnxdx
P(x) P(x) P(x)lnx
exdx cosxdx dx

Bạn đang xem: Sách Giải Bài Tập Toán Lớp 12 Bài 1 : Nguyên Hàm

Bài 1 (trang 100 SGK Giải tích 12): Trong các cặp hàm số dưới đây, hàm số nào là nguyên hàm của hàm số còn lại?

Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 2

Lời giải:

a) Ta có: (-e-x)’ = -e-x.(-x)’ = e-x

⇒ -e-x là một nguyên hàm của hàm số e-x

Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 3

b) (sin2x)’ = 2.sinx.(sinx)’ = 2.sinx.cosx = sin2x

⇒ sin2x là một nguyên hàm của hàm số .

Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 4
Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 5

Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 6 là một nguyên hàm của hàm số Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 7

Giải bài 1 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 1 Trang 100 Sgk Giai Tich 12 8

Bài 2 (trang 100 SGK Giải tích 12): Tìm hiểu nguyên hàm của các hàm số sau:

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 3

Lời giải:

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 4

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 5

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 6

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 7

Giải bài 2 trang 100 sgk Giải tích 12 | Để học tốt Toán 12 Bai 2 Trang 100 Sgk Giai Tich 12 8

Bài 3 (trang 101 SGK Giải tích 12): 3. Sử dụng phương pháp đổi biến, hãy tính:

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 10

Lời giải:

a) Đặt u = 1 – x ⇒ u’(x) = -1⇒ du = -dx

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 2

Thay u = 1 – x vào kết quả ta được :

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 3

b) Đặt u = 1 + x2 ⇒ u’ = 2x ⇒ du = 2x.dx

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 4

Thay lại u = 1+ x2 vào kết quả ta được:

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 5

c) Đặt u = cosx ⇒ u’ = -sinx ⇒ du = -sinx.dx

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 6

Thay lại u = cos x vào kết quả ta được:

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 11

d) Ta có:

Giải bài 3 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 3 Trang 101 Sgk Giai Tich 12 7

Bài 4 (trang 101 SGK Giải tích 12): Sử dụng phương pháp tính nguyên hàm từng phần, hãy tính:

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 3

Lời giải:

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 4

Theo công thức nguyên hàm từng phần ta có:

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 5

b) Đặt

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 6

Theo công thức nguyên hàm từng phần ta có:

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 7

Theo công thức nguyên hàm từng phần ta có:

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 8

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 9

Giải bài 4 trang 101 sgk Giải tích 12 | Để học tốt Toán 12 Bai 4 Trang 101 Sgk Giai Tich 12 10

 

Print Friendly, PDF & Email

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình / 5. Số lượt đánh giá:

Bài trước

– Chọn bài -Bài 1 : Nguyên hàmBài 2 : Tích phânBài 3 : Ứng dụng của tích phân trong hình họcÔn tập chương 3 giải tích 12

Bài tiếp

Bình luận

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button