Kiến thức

Sách Giải Bài Tập Toán Lớp 9 Bài 5: Công Thức Nghiệm Thu Gọn

Phần Đại số – Chương 4: Hàm số y = ax (a ≠ 0) – Phương trình bậc hai một ẩn

– Chọn bài -Bài 1: Hàm số y = ax (a ≠ 0)Bài 4: Công thức nghiệm của phương trình bậc haiBài 3: Phương trình bậc hai một ẩnLuyện tập trang 38-39Bài 2: Đồ thị hàm số y = ax (a ≠ 0)Luyện tập trang 54Luyện tập trang 49-50Bài 6: Hệ thức Vi-ét và ứng dụngBài 5: Công thức nghiệm thu gọnLuyện tập trang 59-60Bài 8: Giải bài toán bằng cách lập phương trìnhLuyện tập trang 56-57Bài 7: Phương trình quy về phương trình bậc haiÔn tập chương 4 (Câu hỏi – Bài tập)

  • Sách Giáo Khoa Toán lớp 9 tập 1

  • Sách Giáo Khoa Toán lớp 9 tập 2

  • Giải Sách Bài Tập Toán Lớp 9

  • Sách Giáo Viên Toán Lớp 9 Tập 1

  • Sách Giáo Viên Toán Lớp 9 Tập 2

  • Sách Bài Tập Toán Lớp 9 Tập 1

  • Sách Bài Tập Toán Lớp 9 Tập 2

Sách giải toán 9 Bài 5: Công thức nghiệm thu gọn giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 9 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 9 Tập 2 Bài 5 trang 48: Từ bảng kết luận của bài trước hãy dùng các đẳng thức b = 2b’, Δ = 4Δ’ để suy ra những kết luận sau:

Lời giải

Với b = 2b’, Δ = 4Δ’ ta có:

a) Nếu Δ’ > 0 thì Δ > 0 phương trình có hai nghiệm

Giải bài tập Toán 9 | Giải Toán lớp 9 Tra Loi Cau Hoi Toan 9 Tap 2 Bai 5 Trang 48 1

b) Nếu Δ’ = 0 thì Δ = 0 phương trình có nghiệm kép

x = (-b)/2a = (-2b’)/2a = (-b’)/a

c) Nếu Δ’ < 0 thì Δ < 0 do đó phương trình vô nghiệm.

Trả lời câu hỏi Toán 9 Tập 2 Bài 5 trang 48: Giải phương trình 5x2 + 4x – 1 = 0 bằng cách điền vào những chỗ trống:

a = …;        b’ = …;        c = …;

Δ’ = …;        √(Δ’) = ….

Nghiệm của phương trình:

x1 = …;        x2 = ….

Lời giải

a = 5;        b’ = 2;        c = -1;

Δ’ = 9;        √(Δ’) = 3

Nghiệm của phương trình:

Giải bài tập Toán 9 | Giải Toán lớp 9 Tra Loi Cau Hoi Toan 9 Tap 2 Bai 5 Trang 48 2

Trả lời câu hỏi Toán 9 Tập 2 Bài 5 trang 49: Xác định a, b’, c rồi dùng công thức nghiệm thu gọn giải các phương trình:

a) 3x2 + 8x + 4 = 0;

b) 7x2 – 6√2x + 2 = 0.

Lời giải

a) 3x2 + 8x + 4 = 0;

a = 3; b’ = 4; c = 4

Δ’= (b’)2 – ac = 42 – 3.4 = 4 ⇒ √(Δ’) = 2

Phương trình có 2 nghiệm:

x1 = (-4 + 2)/3 = (-2)/3; x2 = (-4 – 2)/3 = -2

b) 7x2 – 6√2x + 2 = 0

a = 7; b’ = -3√2; c = 2

Δ’ =(b’)2 – ac = (-3√2)2 – 7.2 = 4 ⇒ √(Δ’) = 2

Phương trình có 2 nghiệm:

x1 = (3√2 + 2)/7; x2 = (3√2 – 2)/7

Bài 5: Công thức nghiệm thu gọn

Bạn đang xem: Sách Giải Bài Tập Toán Lớp 9 Bài 5: Công Thức Nghiệm Thu Gọn

Bài 17 (trang 49 SGK Toán 9 tập 2): Xác định a, b’, c rồi dùng công thức nghiệm thu gọn giải các phương trình:

a) 4x2 + 4x + 1 = 0 ;

b) 13852x2 – 14x + 1 = 0;

c) 5x2 – 6x + 1 = 0;

d) -3x2 + 4√6.x + 4 = 0.

Lời giải

a) Phương trình bậc hai 4x2 + 4x + 1 = 0

Có a = 4; b’ = 2; c = 1; Δ’ = (b’)2 – ac = 22 – 4.1 = 0

Phương trình có nghiệm kép là:

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 17 Trang 49 Toan 9 Tap 2 2

b) Phương trình 13852x2 – 14x + 1 = 0

Có a = 13852; b’ = -7; c = 1; Δ’ = (b’)2 – ac = (-7)2 – 13582.1 = -13533 < 0

Vậy phương trình vô nghiệm.

c) Phương trình bậc hai 5x2 – 6x + 1 = 0

Có: a = 5; b’ = -3; c = 1.; Δ’ = (b’)2 – ac = (-3)2 – 5 = 4 > 0

Phương trình có hai nghiệm phân biệt:

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 17 Trang 49 Toan 9 Tap 2 3

d) Phương trình bậc hai: Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 17 Trang 49 Toan 9 Tap 2 4

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 17 Trang 49 Toan 9 Tap 2 5

Phương trình có hai nghiệm phân biệt :

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 17 Trang 49 Toan 9 Tap 2 6

Kiến thức áp dụng

Bài 5: Công thức nghiệm thu gọn

Bài 18 (trang 49 SGK Toán 9 tập 2): Đưa các phương trình sau về dạng ax2 + 2b’x + c = 0 và giải chúng. Sau đó, dùng bảng số hoặc máy tính để viết gần đúng nghiệm tìm được (làm tròn kết quả đến chữ số thập phân thứ hai):

a) 3x2 – 2x = x2 + 3;

b) (2x – √2)2 – 1 = (x + 1)(x – 1);

c) 3x2 + 3 = 2(x + 1);

d) 0,5x(x + 1) = (x – 1)2.

Lời giải

a) 3x2 – 2x = x2 + 3

⇔ 3x2 – 2x – x2 – 3 = 0

⇔ 2x2 – 2x – 3 = 0 (*)

Có a = 2; b’ = -1; c = -3; Δ’ = b’2 – ac = (-1)2 – 2.(-3) = 7 > 0

Phương trình (*) có hai nghiệm phân biệt:

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 18 Trang 49 Sgk Toan 9 Tap 2 1

b) (2x – √2)2 – 1 = (x + 1)(x – 1);

⇔ 4x2 – 2.2x.√2 + 2 – 1 = x2 – 1

⇔ 4x2 – 2.2√2.x + 2 – 1 – x2 + 1 = 0

⇔ 3x2 – 2.2√2.x + 2 = 0

Có: a = 3; b’ = -2√2; c = 2; Δ’ = b’2 – ac = (-2√2)2 – 3.2 = 2 > 0

Vì Δ’ > 0 nên phương trình có hai nghiệm phân biệt là:

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 18 Trang 49 Sgk Toan 9 Tap 2 2

c) 3x2 + 3 = 2(x + 1)

⇔ 3x2 + 3 = 2x + 2

⇔ 3x2 + 3 – 2x – 2 = 0

⇔ 3x2 – 2x + 1 = 0

Phương trình có a = 3; b’ = -1; c = 1; Δ’ = b’2 – ac = (-1)2 – 3.1 = -2 < 0

Vậy phương trình vô nghiệm.

d) 0,5x(x + 1) = (x – 1)2

⇔ 0,5x2 + 0,5x = x2 – 2x + 1

⇔ x2 – 2x + 1 – 0,5x2 – 0,5x = 0

⇔ 0,5x2 – 2,5x + 1 = 0

⇔ x2 – 5x + 2 = 0

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 18 Trang 49 Sgk Toan 9 Tap 2 3

Phương trình có hai nghiệm phân biệt:

Giải bài 18 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 18 Trang 49 Sgk Toan 9 Tap 2 4

Bài 5: Công thức nghiệm thu gọn

Xem thêm: Khảo sát sự biến thiên và vẽ đồ thị của hàm số lượng giác-Lượng Giác

Bài 19 (trang 49 SGK Toán 9 tập 2): Đố. Đố em biết vì sao khi a > 0 và phương trình ax2 + bx + c = 0 vô nghiệm thì ax2 + bx + c > 0 với mọi giá trị của x?

Lời giải

Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 19 Trang 49 Sgk Toan 9 Tap 2 1

Ta có: a > 0 (gt), Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 19 Trang 49 Sgk Toan 9 Tap 2 2 với mọi x, a, b ⇒ Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 19 Trang 49 Sgk Toan 9 Tap 2 3

Phương trình ax2 + bx + c vô nghiệm nên Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 19 Trang 49 Sgk Toan 9 Tap 2 4

Vậy ax2 + bx + c = Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 19 Trang 49 Sgk Toan 9 Tap 2 5 với mọi x.

Bài 5: Công thức nghiệm thu gọn

Luyện tập (trang 49-50 sgk Toán 9 Tập 2)

Bài 20 (trang 49 SGK Toán 9 tập 2): Giải các phương trình:

a) 25x2 – 16 = 0;

b) 2x2 + 3 = 0;

c) 4,2x2 + 5,46x = 0;

d) 4x2 – 2√3.x = 1 – √3.

Lời giải

Giải bài 20 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 20 Trang 49 Sgk Toan 9 Tap 2 1

Phương trình vô nghiệm vì x2 ≥ 0 với mọi x.

c) 4,2x2 + 5,46x = 0

⇔ x.(4,2x + 5,46) = 0

⇔ x = 0 hoặc 4,2x + 5,46 = 0

+ 4,2x + 5,46 = 0 ⇔ Giải bài 20 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 20 Trang 49 Sgk Toan 9 Tap 2 2

Vậy phương trình có hai nghiệm x1 = 0 và Giải bài 20 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 20 Trang 49 Sgk Toan 9 Tap 2 3

d) 4x2 – 2√3 x = 1 – √3.

⇔ 4x2 – 2√3 x – 1 + √3 = 0

Có a = 4; b’ = -√3; c = -1 + √3;

Δ’ = b’2 – ac = (-√3)2 – 4(-1 + √3) = 7 – 4√3 = 4 – 2.2.√3 + (√3)2 = (2 – √3)2.

Phương trình có hai nghiệm phân biệt:

Giải bài 20 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 20 Trang 49 Sgk Toan 9 Tap 2 4

Kiến thức áp dụng

Bài 5: Công thức nghiệm thu gọn

Luyện tập (trang 49-50 sgk Toán 9 Tập 2)

Xem thêm: Động từ khuyết thiếu-Modal verbs là gì? Bài luyện tập động từ khuyết thiếu

Bài 21 (trang 49 SGK Toán 9 tập 2): Giải vài phương trình của An Khô-va-ri-zmi (xem Toán 7, Tập 2, tr.26):

Giải bài 21 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 21 Trang 49 Sgk Toan 9 Tap 2 1

Lời giải

a) x2 = 12x + 288

⇔ x2 – 12x – 288 = 0

Có a = 1; b’ = -6; c = -288; Δ’ = b’2 – ac = (-6)2 – 1.(-288) = 324 > 0

Phương trình có hai nghiệm:

Giải bài 21 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 21 Trang 49 Sgk Toan 9 Tap 2 2

Vậy phương trình có hai nghiệm x1 = 24 và x2 = -12.

b) Giải bài 21 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 21 Trang 49 Sgk Toan 9 Tap 2 3

⇔ x2 + 7x = 228

⇔ x2 + 7x – 228 = 0

Có a = 1; b = 7; c = -228; Δ = b2 – 4ac = 72 – 4.1.(-228) = 961 > 0

Phương trình có hai nghiệm:

Giải bài 21 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 21 Trang 49 Sgk Toan 9 Tap 2 4

Vậy phương trình có hai nghiệm x1 = 12 và x2 = -19.

Kiến thức áp dụng

Bài 5: Công thức nghiệm thu gọn

Luyện tập (trang 49-50 sgk Toán 9 Tập 2)

Bài 22 (trang 49 SGK Toán 9 tập 2): Không giải phương trình, hãy cho biết mỗi phương trình sau có bao nhiêu nghiệm?

Giải bài 22 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 22 Trang 49 Sgk Toan 9 Tap 2 1

Lời giải

a) Phương trình 15x2 + 4x – 2005 = 0 có a = 15; c = -2005 trái dấu

⇒ Phương trình có hai nghiệm phân biệt.

b) Phương trình Giải bài 22 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 22 Trang 49 Sgk Toan 9 Tap 2 2Giải bài 22 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 22 Trang 49 Sgk Toan 9 Tap 2 3 ; c = 1890 trái dấu

⇒ Phương trình có hai nghiệm phân biệt.

Kiến thức áp dụng

Bài 5: Công thức nghiệm thu gọn

Luyện tập (trang 49-50 sgk Toán 9 Tập 2)

Xem thêm: Lực đàn hồi và Lực hồi phục-Chiều dài con lắc lò xo-Chăm Học Bài

Bài 23 (trang 50 SGK Toán 9 tập 2): Rada của một máy bay trực thăng the dõi chuyển động của ôtô trong 10 phút, phát hiện rằng vận tốc v của ôtô they đổi phụ thuộc vào thời gian bởi công thức:

v = 3t2 -30t + 135

(t tính bằng phút, v tính bằng km/h)

a) Tính vận tốc của ôtô khi t = 5 phút.

b) Tính giá trị của t khi vận tốc ôtô bằng 120km/h (làm tròn kết quả đến chữ số thập phân thứ hai).

Lời giải

a) Tại t = 5, ta có: v = 3.52 – 30.5 + 135 = 60 (km/h)

b) Khi v = 120 km/h

⇔ 3t2 – 30t + 135 = 120

⇔ 3t2 – 30t + 15 = 0

Có a = 3; b’ = -15; c = 15; Δ’ = b’2 – ac = (-15)2 – 3.15 = 180

Phương trình có hai nghiệm phân biệt

Giải bài 23 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 23 Trang 50 Sgk Toan 9 Tap 2 1

Vì rada quan sát chuyển động của ô tô trong 10 phút nên t1 và t2 đều thỏa mãn.

Vậy tại t = 9,47 phút hoặc t = 0,53 phút thì vận tốc ô tô bằng 120km/h.

Bài 5: Công thức nghiệm thu gọn

Luyện tập (trang 49-50 sgk Toán 9 Tập 2)

Bài 24 (trang 50 SGK Toán 9 tập 2): Cho phương trình (ẩn x) x2 – 2(m – 1)x + m2 = 0.

a) Tính Δ’.

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt? Có nghiệm kép? Vô nghiệm.

Lời giải

a) Phương trình x2 – 2(m – 1)x + m2 = 0 (1)

Có a = 1; b’ = -(m – 1); c = m2

⇒ Δ’ = b’2 – ac = (1 – m)2 – 1.m2 = 1 – 2m + m2 – m2 = 1 – 2m.

b) Phương trình (1):

+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 24 Trang 50 Sgk Toan 9 Tap 2 1

+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 24 Trang 50 Sgk Toan 9 Tap 2 1

+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 24 Trang 50 Sgk Toan 9 Tap 2 1

Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 24 Trang 50 Sgk Toan 9 Tap 2 1; có nghiệm kép khi m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 24 Trang 50 Sgk Toan 9 Tap 2 1 và vô nghiệm khi m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 24 Trang 50 Sgk Toan 9 Tap 2 1

Kiến thức áp dụng

 

Print Friendly, PDF & Email

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình / 5. Số lượt đánh giá:

Bài trước

– Chọn bài -Bài 1: Hàm số y = ax (a ≠ 0)Bài 4: Công thức nghiệm của phương trình bậc haiBài 3: Phương trình bậc hai một ẩnLuyện tập trang 38-39Bài 2: Đồ thị hàm số y = ax (a ≠ 0)Luyện tập trang 54Luyện tập trang 49-50Bài 6: Hệ thức Vi-ét và ứng dụngBài 5: Công thức nghiệm thu gọnLuyện tập trang 59-60Bài 8: Giải bài toán bằng cách lập phương trìnhLuyện tập trang 56-57Bài 7: Phương trình quy về phương trình bậc haiÔn tập chương 4 (Câu hỏi – Bài tập)

Bài tiếp

Bình luận

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button