Kiến thức

Khoa Ngôn ngữ và Văn hóa-Trường Đại học Khoa học

Tính chẵn, lẻ và chu kì của hàm số lượng giác – Toán lớp 11

Chia sẻ

26/06/2020

766


Bạn đang xem: Khoa Ngôn ngữ và Văn hóa-Trường Đại học Khoa học

A. Phương pháp giải & Ví dụ

a. Tính tuần hoàn và chu kì:

Định nghĩa: Hàm số y = f(x) có tập xác định được gọi là hàm số tuần hoàn, nếu tồn tại một số T≠0 sao cho với mọi x ∈ D ta có:

        ♦ (x- T) ∈ D và (x + T) ∈ D

        ♦ f (x + T) = f(x).

Số dương T nhỏ nhất thỏa mãn các tính chất trên được gọi là chu kì của hàm số tuần hoàn đó. Người ta chứng minh được rằng hàm số y = sinx tuần hoàn với chu kì T = 2 π ; hàm số y = cosx tuần hoàn với chu kì T = 2 π; hàm số y = tanx tuần hoàn với chu kì T = π; hàm số y = cotx tuần hoàn với chu kì T = π

Chú ý:

    Hàm số y = sin(ax + b) tuần hoàn với chu kì T = Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    Hàm số y = cos(ax + b) tuần hoàn với chu kì T = Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    Hàm số y = tan(ax + b) tuần hoàn với chu kì T = Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    Hàm số y = cot(ax + b) tuần hoàn với chu kì T = Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    Hàm số y = f1(x) tuần hoàn với chu kì T1 và hàm số y = f2(x) tuần hoàn với chu kì T2 thì hàm số y = f1(x) ± f2(x) tuần hoàn với chu kì T0 là bội chung nhỏ nhất của T1 và T2 .

b. Hàm số chẵn, lẻ:

Định nghĩa:

    Hàm số y = f(x) có tập xác định là D được gọi là hàm số chẵn nếu:

        ♦ x ∈ D và – x ∈ D.

        ♦ f(x) = f(-x).

    Hàm số y = f(x) có tập xác định là D được gọi là hàm số lẻ nếu:

        ♦ x ∈ D và – x ∈ D.

        ♦ f(x) = – f(-x).

Ví dụ minh họa

Bài 1: Xét tính tuần hoàn và tìm chu kì cơ sở của các hàm số sau:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn giải

a. Hàm số đã cho tuần hoàn với chu kì T = 2π/2 = π.

b.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có hàm số y = cosx tuần hoàn với chu kì T = 2 π , hàm số y = cos2x tuần hoàn với chu kì T = π. Vậy hàm số đã cho tuần hoàn với chu kì T = 2 π .

Bài 2: Xét tính tuần hoàn và tìm chu kì cơ sở của các hàm số sau: y = cosx + cos√3x.

Hướng dẫn giải

Giả sử hàm số đã cho tuần hoàn với chu kì T ≠ 0. Khi đó ta có:

cos(x + T) + cos[√3(x +T)] = cosx + cos√3x.

Cho x = 0. Ta có: cosT + cos√3T = 2. Vì cosx ≤ 1 với mọi x nên ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

mà m, k ∈ Z (vô lý). Vậy hàm số đã cho không tuần hoàn.

Bài 3: Xét tính chẵn lẻ của các hàm số sau:

a. y = sinx.

b. y = cos(2x).

c. y = tanx + cos(2x + 1).

Hướng dẫn giải

a. Tập xác định D = R. Lấy x ∈ D thì – x ∈ D. Ta có: sin (-x) = -sinx. Vậy hàm số đã cho là hàm số lẻ.

b. Tập xác định D = R. Lấy x ∈ D thì – x ∈ D. Ta có: cos(-2x) = cos(2x). Vậy hàm số đã cho là hàm số chẵn.

c.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lấy x ∈ D thì – x ∈ D. Ta có:

tan(-x) + cos(-2x + 1) = -tanx + cos(-2x + 1).

Vậy hàm số đã cho không chẵn, không lẻ.

B. Bài tập vận dụng

Bài 1: Xét tính tuần hoàn và tìm chu kì cơ sở của các hàm số sau:

a) y = cos(-2x +4)

b) y = tan(7x + 5)

Lời giải:

a) Hàm số đã cho làm hàm tuần hoàn với chu kì T = 2π/2 = π

b) Hàm số đã cho làm hàm tuần hoàn với chu kì T =π /7.

Bài 2: Xét tính tuần hoàn và tìm chu kì cơ sở của hàm số sau: y = sinx + sin3x

Lời giải:

Ta có y = sinx là hàm tuần hoàn với chu kì T = 2 π và hàm số y = sin3x là hàm tuần hoàn với chu kì T = (2 π)/3. Vậy hàm số đã cho là hàm tuần hoàn với chu kì T = 2 π .

Bài 3: Xét tính tuần hoàn và tìm chu kì cơ sở của các hàm số sau: y = cosx + 2sin5x

Lời giải:

Làm tương tự bài 2 và sử dụng chú ý phần tính tuần hoàn và chu kì, ta có hàm số đã cho là hàm tuần hoàn với chu kì T = 2 π .

Bài 4: Xét tính chẵn, lẻ của các hàm số sau:

a) y = cosx + cos2x

b) y = tanx + cotx.

Lời giải:

a) Ta có tập xác định của hàm số là D = R.

cos(-x) + cos(-2x) = cosx + cos2x. Vậy hàm số đã cho là hàm số chẵn.

b) Ta có tập xác định của hàm số là D = R{k π/2, k ∈ Z}.

tan(-x) + cot(-x) = – tanx – cotx. Vậy hàm số đã cho là hàm số lẻ.

Bài 5: Xét tính chẵn, lẻ của các hàm số sau:

a) y = cosx + sinx.

b) y = sin2x + cot100x

Lời giải:

a) Ta có tập xác định của hàm số là D = R.

sin (-x) + cos(-x) = – sinx + cosx. Vậy hàm số đã cho là hàm không chẵn, không lẻ.

b) Ta có tập xác định của hàm số là D = R{k π /100, k ∈ Z}.

sin(-2x) + cot(-100x) = – sin2x – cot(100x). Vậy hàm số đã cho là hàm số lẻ.

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button