Kiến thức

Toán 10-Khảo sát hàm số bậc 2, bài tập áp dụng

  • Trang chủ

  • Tin tức mới

  • Kiến thức THPT

  • Trung Học PT lớp 10

  • Toán 10 – Khảo sát hàm số bậc 2, bài tập áp dụng

Toán 10 – Khảo sát hàm số bậc 2, bài tập áp dụng

16:29:2414/08/2018

Khảo sát hàm số là chuyên đề không khó với nhiều học sinh. Đây cũng là 1 chuyên đề mà có thể nhiều bạn cảm thấy thích thú.

Tuy nhiên cũng còn khá nhiều em chưa hiểu rõ và nhớ được các bước khảo sát hàm số bậc 2, trong bài viết này sẽ hướng dẫn chi tiết các bước khảo sát hàm bậc 2, vận dụng vào bài tập để các em hiểu rõ hơn.

Bạn đang xem: Toán 10-Khảo sát hàm số bậc 2, bài tập áp dụng

I. Khảo sát hàm số bậc hai y = ax2 + bx + c (a ≠ 0):

• TXĐ : D = R.

•  Tọa độ đỉnh I (-b/2a; f(-b/2a)). f(-b/2a) = -Δ/4a

•  Trục đối xứng : x = -b/2a

•  Tính biến thiên :

 a > 0 hàm số nghịch biến trên (-∞; -b/2a). và đồng biến trên khoảng (-b/2a; +∞)

 a < 0 hàm số đồng biến trên (-∞; -b/2a). và nghịch biến trên khoảng (-b/2a; +∞)

– Bảng biến thiên :

* a > 0

bảng biến thiên hàm số bậc 2

* a < 0

bảng biến thiên hàm số bậc 2

• Đồ thị:

– Đồ thị hàm số ax 2 + bx + c là một đường parabol (P) có: Đỉnh I (-b/2a; f(-b/2a)).

– Trục đối xứng : x = -b/2a. Parabol (P) quay bề lõm lên trên nếu a > 0, parabol (P) quay bề lõm xuống dưới nếu a < 0.

hayhochoi dn3

II. Bài tập áp dụng Khảo sát hàm số bậc 2

* Ví dụ 1 (Bài 2 trang 49 SGK Toán 10 CB): Lập bảng biến thiên và vẽ đồ thị hàm số:

a) y = 3x2 – 4x + 1

d) y = -x2 + 4x – 4

* Lời giải:

a) y = 3x2 – 4x + 1 ( a = 3; b =-4; c = 1)

TXĐ : D = R.

Tọa độ đỉnh I (2/3; -1/3).

Trục đối xứng : x = 2/3

Tính biến thiên :

a = 3 > 0 hàm số nghịch biến trên (-∞; 2/3). và đồng biến trên khoảng 2/3 ; +∞)

bảng biến thiên :

bảng biến thiên
(P) giao trục hoành y = 0 :  3x2 – 4x + 1 = 0 <=> x = 1 v x = ½ Các điểm đặc biệt :

(P) giao trục tung : x = 0 => y = 1

Đồ thị :

đồ thị hàm số bậc 2

Đồ thị hàm số y = 3x2 – 4x + 1 là một đường parabol (P) có:

  • Đỉnh  I(2/3; -1/3).
  • Trục đối xứng : x = 2/3.
  • parabol (P) quay bề lõm lên trên .

d) y = -x2 + 4x – 4

TXĐ : D = R.

Tọa độ đỉnh I (2; 0).

Trục đối xứng : x = 2

Tính biến thiên :

a = -1 < 0 hàm số đồng biến trên (-∞; 2). và nghịch biến trên khoảng 2 ; +∞)

bảng biến thiên :bảng biến thiênCác điểm đặc biệt :

(P) giao trục hoành y = 0 :  -x2 + 4x – 4 = 0 <=> x = 2

(P) giao trục tung : x = 0 => y = -4

Đồ thị :

đồ thị hàm số bậc 2

Đồ thị hàm số y = -x2 + 4x – 4 là một đường parabol (P) có:

  • Đỉnh  I(2; 0).
  • Trục đối xứng : x = 2.

parabol (P) quay bề lõm xuống dưới .

* Ví dụ 2: Cho hàm số :y = f(x)  = ax2 + 2x – 7 (P).

Tìm a để đồ thị (P) đi qua A(1, -2)

* Lời giải:

Ta có : A(1, -2) ∈(P), nên : -2  = a.12 + 2.1 – 7 ⇔   a = 3

Vậy : y = f(x)  = 3x2 + 2x – 7 (P)

* Ví dụ 3: Cho hàm số :y = f(x)  = ax2 + bx + c (P).

Tìm a, b, c  để đồ thị (P) đi qua A(-1, 4) và có đỉnh S(-2, -1).

* Lời giải:

Ta có : A(-1, 4) ∈ (P), nên : 4 = a – b + c (1)

Ta có : S(-2, -1) ∈ (P), nên : -1 = 4a – 2b + c (2) 

(P) có đỉnh S(-2, -1), nên : xS = -b/2a  ⇔ 4a – b = 0 (3)

Từ (1), (2) và (3), ta có hệ : a-b+c=4 và 4a-2b+c=-1 và 4a-b=0

Giải hệ này được: a=5; b=20; c=19 

Vậy : y = f(x)  = 5x2 + 20x + 19 (P)

III. Bài tập khảo sát hàm số bậc 2 tự giải

* BÀI 1 : cho hàm số bậc hai :  y = f(x)  = x2 + 2mx + 2m – 1 (Pm). đường thẳng (d) : y = 2x – 3

a) Khảo sát và vẽ đồ thị của hàm số khi m = 2.

b) Tìm m để (Pm) tiếp xúc (d).

c) Tìm m để (d) cắt (Pm) tại hai điểm A, B phân biệt sao cho tam giác OAB vuông tại O.

* BÀI 2 : Cho hàm số :y = f(x)  = ax2 + bx + 3 (P). tìm phương trình (P) :

a) (P) đi qua hai điểm A(1, 0) và B(2, 5).

b) (P) tiếp xúc trục hoành tại x = -1.

c) (P) đi qua điểm M(-1, 9) và có trục đối xứng là x = -2.

* BÀI 3 : Cho hàm số y = f(x)  = x2 – 4|x|, (P)

a) Khảo sát và vẽ đồ thị của hàm số (P).

b) Tìm m để phương trình sau có 4 nghiệm :  x2 – 4|x|  + 2m – 3 = 0.

* Bài 4 : Cho hàm số: y = f(x)  = -2x2 +4x – 2 (P) và (D) : y = x + m.

a) Khảo sát và vẽ đồ thị của hàm số (P).

b) Xác định m để (d) cắt (P) tại hai điểm phân biệt A và B thỏa AB = 2.

Như vậy, để khảo sát và vẽ đồ thị hàm số bậc 2 các em cần nhớ các công việc chính như: Tìm Tập xác định của hàm số, Tìm đỉnh và trục đối xứng, lập bảng biến thiên, tìm một số điểm đặc biệt (x=0 để tìm y hay cho y=0 để tìm x) và vẽ đồ thị.

Hy vọng rằng với phần hướng dẫn chi tiết về hàm số bậc 2, cách vẽ đồ thị hàm số bậc 2 ở trên, các em đã hiểu rõ cách làm và vận dụng giải toán, chúc các em học tốt.

Tags:

  • Đại số 10

  • Hàm số bậc 2

  • Khảo sát hàm số bậc 2

  • Cách vẽ đồ thị hàm số bậc 2

  • Đồ thị parabol

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button