Kiến thức

Cách tìm cực trị của hàm số cực hay-Toán lớp 12

Cách tìm cực trị của hàm số cực hay

  • Đồng giá 250k 1 khóa học lớp 3-12 bất kỳ tại VietJack!


Trang trước

Trang sau


Cách tìm cực trị của hàm số cực hay

Bài giảng: Các dạng bài tìm cực trị của hàm số – Cô Nguyễn Phương Anh (Giáo viên VietJack)

Bạn đang xem: Cách tìm cực trị của hàm số cực hay-Toán lớp 12

A. Phương pháp giải & Ví dụ

Xem thêm: Cách Tìm Ước Số Chung Lớn Nhất Chính Xác 100%-Babelgraph

Phương pháp giải

Quảng cáo

1.Định nghĩa: Cho hàm số y = f(x)xác định và liên tục trên khoảng (a;b) (có thể a là -∞; b là +∞) và điểm x0∈(a;b).

Nếu tồn tại số h > 0 sao cho f(x)< f(x0 ) với mọi x ∈ (x0 – h;x0 + h) và x≠x_0 thì ta nói hàm số f(x) đạt cực đại tại x0.

Nếu tồn tại số h >0 sao cho f(x) >f(x0 ) với mọi x ∈ (x0 – h;x0 + h) và x ≠ x0 thì ta nói hàm số f(x) đạt cực tiểu tại x0.

2.Điều kiện đủ để hàm số có cực trị: Giả sử hàm số y=f(x) liên tục trên

K=(x0 – h;x0 + h)và có đạo hàm trên K hoặc trên K{x0}, với h >0.

Nếu f'(x)> 0 trên khoảng (x0 – h;x0) và f'(x) <0 trên (x0;x0 + h) thì x0 là một điểm cực đại của hàm số f(x).

Nếu f'(x) < 0 trên khoảng (x0 – h;x0) và f'(x) >0 trên (x0;x0+ h) thì x0 là một điểm cực tiểu của hàm số f(x).

Minh họa bằng bảng biến thiến

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Chú ý.

Nếu hàm sốy=f(x) đạt cực đại (cực tiểu) tại x0 thì x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f (fCT), còn điểm M(x0;f(x0)) được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3.Quy tắc tìm cực trị của hàm số

Quy tắc 1:

   Bước 1. Tìm tập xác định của hàm số.

   Bước 2. Tínhf'(x). Tìm các điểm tại đó f'(x)bằng 0 hoặc f'(x) không xác định.

   Bước 3. Lập bảng biến thiên.

   Bước 4. Từ bảng biến thiên suy ra các điểm cực trị.

Quy tắc 2:

   Bước 1. Tìm tập xác định của hàm số.

   Bước 2. Tính f'(x). Giải phương trình f'(x)và ký hiệuxi (i=1,2,3,…)là các nghiệm của nó.

   Bước 3. Tính f”(x) và f”(xi ) .

   Bước 4. Dựa vào dấu của f”(xi )suy ra tính chất cực trị của điểm xi.

Quảng cáo

Ví dụ minh họa

Ví dụ 1. Tìm cực trị của hàm số y = 2x3 – 6x + 2.

Hướng dẫn

Tập xác định D = R.

Tính y’ = 6x2 – 6. Cho y’= 0 ⇔ 6x2 – 6 = 0 ⇔ x = ±1.

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đạt cực đại tại x = – 1, y = 6 và hàm số đạt cực tiểu tại x = 1,y = -2.

Ví dụ 2. Tìm cực trị của hàm số y = x4 – 2x2 + 2.

Hướng dẫn

Tập xác định D = R.

Tính y’ = 4x3 – 4x. Cho y’= 0 ⇔ 4x3 – 4x = 0 ⇔Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải.

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đạt cực tiểu tại x = ±1, y = 1 và hàm số đạt cực đại tại x = 0, y = 2.

Ví dụ 3. Tìm cực trị của hàm số y = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn

Tập xác định D = R{2}. Tính Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đã cho không có cực trị.

Xem thêm: Giải bài toán dân gian bằng cách lập hệ phương trình-Novateen

B. Bài tập vận dụng

Bài 1. Tìm cực trị của hàm số y = -x3 + 3x2 – 4

Tập xác định D = R.

Tính y’= -3x2 + 6x.

Cho y’= 0⇔-3x2 + 6x = 0⇔Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đạt cực tiểu tại x = 0,y = -4 và hàm số đạt cực đại tại x = 2,y = 0.

Quảng cáo

Bài 2. Tìm cực trị của hàm số y = -x3 + 3x3 – 3x + 2

Tập xác định D = R.

Tính y’ = -3x2 + 6x-3.

Cho y’= 0 ⇔ -3x2+ 6x-3 = 0 ⇔ x = 1.

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đã cho không có cực trị.

Bài 3. Gọi A,B là hai điểm cực trị của đồ thị hàm số y = 2x3 – 3x2 – 12x + 1. Tìm tọa độ A,B và phương trình đường thẳng qua hai điểm đó.

Tập xác định D = R.

Tính y’ = 6x2 – 6x – 12.

Cho y’= 0 ⇔Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Suy ra tọa độ hai điểm cực trị là A(-1;8), B(2;-19).

Vậy phương trình đường thẳng AB là 9x + y + 1 = 0.

Bài 4. Cho hàm số y = x3 – 3x2 có đồ thị (C). Tìm các điểm cực đại, cực tiểu của đồ thị (C)và khoảng cách giữa hai điểm cực trị đó.

Tập xác định D = R.

Tính y’= 3x2-6x.

Cho y’= 0 ⇔Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy tọa độ hai điểm cực trị là A(-1;8),B(2;-19). Khi đó AB =Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 5. Tìm cực trị của hàm số y = x4/4 – x2 + 2

Tập xác định D = R.

Tính y’= 2x3-2x.

Cho y’= 0 ⇔ 4x3 – 4x = 0 ⇔Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đạt cực tiểu tại x = ±1, y = 3/2 và hàm số đạt cực đại tại x = 0, y = 2.

Bài 6. Tìm cực trị của hàm số y = -x4 + 4x2 – 5

Tập xác định D = R.

Tính y’= -4x3 + 8x.

Cho y’= 0 ⇔ -4x3 + 8x = 0⇔Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đạt cực tiểu tại x = 0, y = -5 và hàm số đạt cực đại tại x = ±√2, y = -1.

Bài 7. Tìm cực trị của hàm số y = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Tập xác định D = R{-1}.

Tính y’ =Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Cho y’ = 0⇔ x2 + 2x – 3 = 0 ⇔Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đạt cực đại tại x = -3, y = -7 và đạt cực tiểu tại x = 1, y = 1.

<!–

Quảng cáo

–>

<!– (adsbygoogle = window.adsbygoogle || []).push({}); –>

Bài 8. Tìm cực trị của hàm số y = x – 5 + 1/x

Tập xác định D = R{0}.

Tính Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Cho y’ = 0⇔x2 – 1 = 0 ⇔Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đạt cực đại tại x = -1, y = -7 và đạt cực tiểu tại x = 1, y = -3.

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

  • Trắc nghiệm Tìm cực trị của hàm số

  • Dạng 2: Tìm tham số m để hàm số đạt cực trị tại một điểm

  • Trắc nghiệm Tìm tham số m để hàm số đạt cực trị tại một điểm

  • Dạng 3: Biện luận theo m số cực trị của hàm số

  • Trắc nghiệm Biện luận theo m số cực trị của hàm số

  • Dạng 4: Bài toán liên quan đến cực trị của hàm số

  • Trắc nghiệm về cực trị hàm số

Xem thêm: Cách tạo Slide Master trong Powerpoint 2010 chỉ với 3 bước

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại

khoahoc.vietjack.com

  • Hơn 75.000 câu trắc nghiệm Toán có đáp án

  • Hơn 50.000 câu trắc nghiệm Hóa có đáp án chi tiết

  • Gần 40.000 câu trắc nghiệm Vật lý có đáp án

  • Hơn 50.000 câu trắc nghiệm Tiếng Anh có đáp án

  • Kho trắc nghiệm các môn khác

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Tổng hợp các video dạy học từ các giáo viên giỏi nhất – CHỈ TỪ 399K tại

khoahoc.vietjack.com

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Luyện thi THPT QG môn Hóa – Thầy Trần Thế Anh

4.5 (243)

799,000đs

599.000 VNĐ

Luyện thi THPTQG môn Tiếng Anh – Cô Vũ Thanh Hoa

4.5 (243)

799,000đ

599.000 VNĐ

Luyện thi THPTQG môn Sinh – Thầy Nguyễn Viết Trung – Mục tiêu 8+

4.5 (243)

799,000đ

599.000 VNĐ

Luyện thi THPTQG môn Lý – Thầy Hoàng Cường – MỤC TIÊU 8+

4.5 (243)

799,000đs

599.000 VNĐ

Luyện thi THPTQG môn Toán – Thầy Nguyễn Quý Huy – MỤC TIÊU 8+

4.5 (243)

799,000đ

599.000 VNĐ

Luyện thi THPT QG môn Toán – Thầy Trần Xuân Trường

4.5 (243)

799,000đ

599.000 VNĐ

xem tất cả


Trang trước

Trang sau

cuc-tri-cua-ham-so.jsp


Các loạt bài lớp 12 khác
  • Soạn Văn 12

  • Soạn Văn 12 (bản ngắn nhất)

  • Văn mẫu lớp 12

  • Giải bài tập Toán 12

  • Giải BT Toán 12 nâng cao (250 bài)

  • Bài tập trắc nghiệm Giải tích 12 (100 đề)

  • Bài tập trắc nghiệm Hình học 12 (100 đề)

  • Giải bài tập Vật lý 12

  • Giải BT Vật Lí 12 nâng cao (360 bài)

  • Chuyên đề: Lý thuyết – Bài tập Vật Lý 12 (có đáp án)

  • Bài tập trắc nghiệm Vật Lí 12 (70 đề)

  • Luyện thi đại học trắc nghiệm môn Lí (18 đề)

  • Giải bài tập Hóa học 12

  • Giải bài tập Hóa học 12 nâng cao

  • Bài tập trắc nghiệm Hóa 12 (80 đề)

  • Luyện thi đại học trắc nghiệm môn Hóa (18 đề)

  • Giải bài tập Sinh học 12

  • Giải bài tập Sinh 12 (ngắn nhất)

  • Chuyên đề Sinh học 12

  • Đề kiểm tra Sinh 12 (có đáp án)(hay nhất)

  • Ôn thi đại học môn Sinh (theo chuyên đề)

  • Luyện thi đại học trắc nghiệm môn Sinh (18 đề)

  • Giải bài tập Địa Lí 12

  • Giải bài tập Địa Lí 12 (ngắn nhất)

  • Giải Tập bản đồ và bài tập thực hành Địa Lí 12

  • Bài tập trắc nghiệm Địa Lí 12 (70 đề)

  • Luyện thi đại học trắc nghiệm môn Địa (20 đề)

  • Giải bài tập Tiếng anh 12

  • Giải bài tập Tiếng anh 12 thí điểm

  • Giải bài tập Lịch sử 12

  • Giải tập bản đồ Lịch sử 12

  • Bài tập trắc nghiệm Lịch Sử 12

  • Luyện thi đại học trắc nghiệm môn Sử (20 đề)

  • Giải bài tập Tin học 12

  • Giải bài tập GDCD 12

  • Giải bài tập GDCD 12 (ngắn nhất)

  • Bài tập trắc nghiệm GDCD 12 (37 đề)

  • Luyện thi đại học trắc nghiệm môn GDCD (20 đề)

  • Giải bài tập Công nghệ 12

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button