Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

  • Đồng giá 250k 1 khóa học lớp 3-12 bất kỳ tại VietJack!

Trang trước

Trang sau

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Bài giảng: Cách xét tính đơn điệu của hàm số – Cô Nguyễn Phương Anh (Giáo viên VietJack)

A. Phương pháp giải

Lý thuyết cần nhớ: Cho hàm số y = f(x,m) có tập xác định D, khoảng (a;b)⊂D:

Hàm số nghịch biến trên (a;b) ⇔ y’ ≤ 0, ∀ x ∈ (a;b)

Hàm số đồng biến trên (a;b) ⇔ y’ ≥ 0, ∀ x ∈ (a;b)

Ghi nhớ: f'(x) = 0 chỉ tại một số điểm hữu hạn của K.

Chú ý: Riêng hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải thì:

Hàm số nghịch biến trên (a;b) ⇔ y’ < 0, ∀ x ∈ (a;b)

Hàm số đồng biến trên (a;b) ⇔ y’ > 0, ∀ x ∈ (a;b)

Nếu gặp bài toán tìm m để hàm số đồng biến (hoặc nghịch biến) trên khoảng (a;b):

Bước 1: Đưa bất phương trình f'(x) ≥ 0 (hoặcf'(x) ≤ 0), ∀ x ∈ (a;b) về dạng g(x) ≥ h(m) (hoặc g(x) ≤ h(m)), ∀ x ∈ (a;b).

Bước 2: Lập bảng biến thiên của hàm số g(x) trên (a;b).

Bước 3: Từ bảng biến thiên và các điều kiện thích hợp ta suy ra các giá trị cần tìm của tham số m.

Dấu tam thức bậc hai

Cho tam thức g(x) = ax2 + bx + c (a ≠ 0)

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Nếu hàm số f(x) có giá trị nhỏ nhất trên tập D, thế thì: Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải.

Nếu hàm số f(x) có giá trị lớn nhất trên tập D, thế thì: Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải.

B. Ví dụ minh họa

Ví dụ 1: Hàm số y = x3 + 3x2 + mx + m đồng biến trên tập xác định khi giá trị của m là:

A. m ≤ 1

B. m ≥ 3

C. -1 ≤ m ≤ 3

D. m < 3

Lời giải

Chọn B

Tập xác định D = R

Tính đạo hàm y’ = 3x2 + 6x + m

Để hàm số đồng biến trên R ⇔ y’ ≥ 0 ⇔ 3x2 + 6x + m ≥ 0 với mọi x ∈ R (*)

⇔ Δ’ ≤ 0 ⇔ 9 – 3m ≤ 0 ⇔ m ≥ 3

Ví dụ 2: Tập hợp các giá trị m để hàm số y = mx3 – x2 + 3x + m – 2 đồng biến trên (-3;0) là

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Lời giải

Chọn A

TXĐ: D = R

Ta có y’ = 3mx2 – 2x + 3. Hàm số đồng biến trên khoảng (-3;0) khi và chỉ khi:

y’ ≥ 0, ∀ x ∈ (-3;0) (Dấu “=” xảy ra tại hữu hạn điểm trên (-3;0))

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Ví dụ 3: Tìm tất cả giá trị của m để hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải đồng biến trên từng khoảng xác định.

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Lời giải

Chọn C

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Hàm số đồng biến trên từng khoảng xác định khi và chỉ khi

y’ > 0; ∀ x ∈ D ⇔ -m2 – m + 2 > 0 ⇔ -2 < m < 1

C. Bài tập trắc nghiệm

Bài 1: Tìm tất cả các giá trị m để hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải đồng biến trên R.

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Lời giải

Chọn A

TXĐ: D = R

Để hàm số y = f(x) đồng biến trên R ⇔ y’ ≥ 0 với mọi x ∈ R

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Bài 2: Tìm tập hợp tất cả các giá trị của tham số thực m để hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải đồng biến trên R.

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Lời giải

Chọn C

TXĐ: D = R

Ta có: y’ = x2 + 2mx + 4

Hàm số đồng biến trên R khi và chỉ khi y’ ≥ 0, ∀ x ∈ R.

⇔ Δ’ = m2-4 ≤ 0 ⇔ -2 ≤ m ≤ 2.

Bài 3: Tìm tất cả các giá trị của tham số m để hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải đồng biến trên (1;+∞)

A. m > 2.

B. m ≤ 2.

C. m < 1.

D. m ≥ 1.

Lời giải

Chọn D

TXĐ: D = R

Hàm số đồng biến trên khoảng (1;+∞) ⇔ y’ ≥ 0; ∀ x ∈ (1;+∞)

Ta có y’ = x2 + 2(m – 1)x + 2m – 3 = (x + 1)(x + 2m – 3) ≥ 0; ∀ x ∈ (1;+∞)

Do x > 1 nên (x + 1) > 0, nên (x + 2m – 3) ≥ 0 với mọi x > 1.

2m – 3 ≥ -x; ∀ x > 1 ⇔ 2m – 3 ≥ -1 ⇔ m ≥ 1.

Bài 4: Cho hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải. Tìm tất cả giá trị của m để hàm số nghịch biến trên R.

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Lời giải

Chọn C

TXĐ: D = R

Ta có y’ = -x2 + 2mx + 3m + 2.

Hàm số nghịch biến trên R khi và chỉ khi y’ ≤ 0, ∀ x ∈ R

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Bài 5: Tất cả các giá trị thực của tham số m sao cho hàm số y = -x4 + (2m – 3)x2 + m nghịch biến trên khoảng (1;2) là Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải tối giản và q > 0. Hỏi tổng p + q là?

A. 5.

B. 9.

C. 7.

D. 3.

Lời giải

Chọn C

Tập xác định D = R.

Ta có y’ = -4x3 + 2(2m – 3)x.

Hàm số nghịch biến trên (1;2) ⇔ y’ ≤ 0, ∀ x ∈ (1;2).

⇔ -4x3 + 2(2m – 3)x ≤ 0, ∀ x ∈ (1;2) ⇔ -4x2 + 4m – 6 ≤ 0, ∀ x ∈ (1;2) (do x > 0)

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Lập bảng biến thiên của g(x) trên (1;2). g'(x) = 2x = 0 ⇔ x = 0

Bảng biến thiên

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Vậy p + q = 5 + 2 = 7.

Bài 6: Tìm m để hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải nghịch biến trên các khoảng xác định của nó.

A. 1 < m < 2.

B. 1 ≤ m ≤ 2.

C. m ≥ 2 hoặc m ≤ 1.

D. m > 2 hoặc m < 1.

Lời giải

Chọn A

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Bài 7: Tìm m để hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải đồng biến trên khoảng (2;+∞)

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Lời giải

Chọn D

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Bài 8: Tìm tất cả các giá trị thực của tham số m sao cho hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải đồng biến trên khoảng Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Lời giải

Chọn A

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Do tan⁡x là hàm đồng biến trên khoảng Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải nên ycbt ⇔ hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải đồng biến trên khoảng (0;1)

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Bài 9: Tìm tất cả các giá trị của tham số thực m để hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải nghịch biến trên (-1;1).

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Lời giải

Chọn C

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Do đó hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải nghịch biến trên khoảng (-1;1) khi hàm số Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải đồng biến trên khoảng Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Bài 10: Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = (m – 3)x – (2m + 1)cos⁡x luôn nghịch biến trên R?

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Lời giải

Chọn A

Tập xác định: D = R.

Ta có: y’ = m – 3 + (2m + 1)sin⁡x

Hàm số nghịch biến trên R ⇔ y’ ≤ 0, ∀ x ∈ R ⇔ (2m + 1)sin⁡x ≤ 3-m, ∀ x ∈ R

Trường hợp 1: Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải. Vậy hàm số luôn nghịch biến trên R.

Trường hợp 2: Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Trường hợp 3: Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

  • Cách xét tính đơn điệu của hàm số mũ cực hay, có lời giải

  • Cách xét tính đơn điệu của hàm số chứa căn thức cực hay, có lời giải

  • Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

  • Tìm khoảng đồng biến, nghịch biến của hàm số cực hay, có lời giải

  • Cách tìm cực trị của hàm trùng phương cực hay, có lời giải

  • Cách tìm cực trị của hàm bậc ba cực hay, có lời giải

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại

khoahoc.vietjack.com

  • Hơn 75.000 câu trắc nghiệm Toán có đáp án

  • Hơn 50.000 câu trắc nghiệm Hóa có đáp án chi tiết

  • Gần 40.000 câu trắc nghiệm Vật lý có đáp án

  • Hơn 50.000 câu trắc nghiệm Tiếng Anh có đáp án

  • Kho trắc nghiệm các môn khác

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Tổng hợp các video dạy học từ các giáo viên giỏi nhất – CHỈ TỪ 399K tại

khoahoc.vietjack.com

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Bạn đang xem: Tìm tham số m để hàm số đơn điệu trên khoảng cho trước cực hay, có lời giải

Luyện thi THPT QG môn Hóa – Thầy Trần Thế Anh

4.5 (243)

799,000đs

599.000 VNĐ

Xem thêm: Điện là gì? Nguồn điện là gì? Điện áp là gì? Các khái niệm về điện

Luyện thi THPTQG môn Tiếng Anh – Cô Vũ Thanh Hoa

4.5 (243)

799,000đ

599.000 VNĐ

Luyện thi THPTQG môn Sinh – Thầy Nguyễn Viết Trung – Mục tiêu 8+

4.5 (243)

799,000đ

599.000 VNĐ

Xem thêm: Một Số Giới Hạn Đặc Biệt Của Dãy Số Và, Giới Hạn Hàm Số

Luyện thi THPTQG môn Lý – Thầy Hoàng Cường – MỤC TIÊU 8+

4.5 (243)

799,000đs

599.000 VNĐ

Xem thêm: THÔNG BÁO KHẨN CẤP

Luyện thi THPTQG môn Toán – Thầy Nguyễn Quý Huy – MỤC TIÊU 8+

4.5 (243)

799,000đ

599.000 VNĐ

Luyện thi THPT QG môn Toán – Thầy Trần Xuân Trường

4.5 (243)

799,000đ

599.000 VNĐ

xem tất cả

Trang trước

Trang sau

ung-dung-dao-ham-de-khao-sat-va-ve-do-thi-cua-ham-so.jsp

Các loạt bài lớp 12 khác
  • Soạn Văn 12

  • Soạn Văn 12 (bản ngắn nhất)

  • Văn mẫu lớp 12

  • Giải bài tập Toán 12

  • Giải BT Toán 12 nâng cao (250 bài)

  • Bài tập trắc nghiệm Giải tích 12 (100 đề)

  • Bài tập trắc nghiệm Hình học 12 (100 đề)

  • Giải bài tập Vật lý 12

  • Giải BT Vật Lí 12 nâng cao (360 bài)

  • Chuyên đề: Lý thuyết – Bài tập Vật Lý 12 (có đáp án)

  • Bài tập trắc nghiệm Vật Lí 12 (70 đề)

  • Luyện thi đại học trắc nghiệm môn Lí (18 đề)

  • Giải bài tập Hóa học 12

  • Giải bài tập Hóa học 12 nâng cao

  • Bài tập trắc nghiệm Hóa 12 (80 đề)

  • Luyện thi đại học trắc nghiệm môn Hóa (18 đề)

  • Giải bài tập Sinh học 12

  • Giải bài tập Sinh 12 (ngắn nhất)

  • Chuyên đề Sinh học 12

  • Đề kiểm tra Sinh 12 (có đáp án)(hay nhất)

  • Ôn thi đại học môn Sinh (theo chuyên đề)

  • Luyện thi đại học trắc nghiệm môn Sinh (18 đề)

  • Giải bài tập Địa Lí 12

  • Giải bài tập Địa Lí 12 (ngắn nhất)

  • Giải Tập bản đồ và bài tập thực hành Địa Lí 12

  • Bài tập trắc nghiệm Địa Lí 12 (70 đề)

  • Luyện thi đại học trắc nghiệm môn Địa (20 đề)

  • Giải bài tập Tiếng anh 12

  • Giải bài tập Tiếng anh 12 thí điểm

  • Giải bài tập Lịch sử 12

  • Giải tập bản đồ Lịch sử 12

  • Bài tập trắc nghiệm Lịch Sử 12

  • Luyện thi đại học trắc nghiệm môn Sử (20 đề)

  • Giải bài tập Tin học 12

  • Giải bài tập GDCD 12

  • Giải bài tập GDCD 12 (ngắn nhất)

  • Bài tập trắc nghiệm GDCD 12 (37 đề)

  • Luyện thi đại học trắc nghiệm môn GDCD (20 đề)

  • Giải bài tập Công nghệ 12

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button