Kiến thức

Các dạng bài tập về phương trình bậc hai một ẩn cực hay, có đáp án-Toán lớp 9

Các dạng bài tập về phương trình bậc hai một ẩn cực hay, có đáp án

  • Đồng giá 250k 1 khóa học lớp 3-12 bất kỳ tại VietJack!


Trang trước

Trang sau


Các dạng bài tập về phương trình bậc hai một ẩn cực hay, có đáp án

Bạn đang xem: Các dạng bài tập về phương trình bậc hai một ẩn cực hay, có đáp án-Toán lớp 9

A. Phương pháp giải

Dạng 1.1: Giải phương trình: ax2 + bx + c = 0 (a ≠ 0)

Bước 1: Xác định các hệ số a; b; c (hoặc a; b’; c) của phương trình bậc hai ax2 + bx + c.

Bước 2: Tính Δ = b2 – 4ac (hoặc Δ’ = b’2 – ac ).

+ TH1: Δ < 0, phương trình vô nghiệm.

+ TH2: Δ = 0, phương trình có nghiệm kép Cách giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

+ TH3: Δ > 0, phương trình có hai nghiệm phân biệt Cách giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Bước 3: Tìm nghiệm của phương trình (nếu có).

Bước 4: Kết luận.

Dạng 1.2: Kiểm tra một giá trị x0 có là nghiệm của phương trình: ax2 + bx + c = 0 (a ≠ 0) hay không.

Bước 1: Thay giá trị x0 vào vế trái của phương trình: ax0 + bx0 + c

Bước 2: Kết luận.Tính vế trái. Nếu kết quả bằng 0 thì x0 là một nghiệm của phương trình.

Bước 3: Kết luận.

Định lý Vi-ét: Nếu phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 (phân biệt hoặc trùng nhau) thì tổng các nghiệm Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9 và tích các nghiệm Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9.

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Dạng 2.1: Tìm tham số m để phương trình có nghiệm thỏa mãn điều kiện cho trước

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.

Bước 3: Sử dụng hệ thức Vi-ét, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.

Bước 4: Đối chiếu điều kiện và kết luận.

Dạng 2.2: Tìm tham số và tìm nghiệm còn lại khi biết trước một nghiệm x0 của phương trình.

Bước 1: Thay giá trị x0 vào phương trình để tìm tham số.

Bước 2: Thay giá trị của tham số hệ thức Vi-ét để tìm nghiệm còn lại.

Bước 3: Kết luận.

Dạng 2.3: Khi phương trình bậc hai có nghiệm, tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào tham số.

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.

Bước 3: Tính m theo S và P.

Bước 4: Khử m và tìm ra hệ thức.

Bước 5: Kết luận.

Dạng 2.4. Áp dụng hệ thức Vi-ét để tính nhẩm nghiệm của phương trình bậc hai

Cho phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0).

+) Nếu a + b + c = 0 thì phương trình có nghiệm x1 = 1 và x2 = Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9.

+) Nếu a – b + c = 0 thì phương trình có nghiệm x1 = -1 và x2 = Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9.

Dạng 2.5. Tìm hai số khi biết tổng và tích

Nếu hai số u và v có tổng u + v = S và tích u.v = P thì hai số đó là nghiệm của phương trình x2 – Sx + P = 0 .

Điều kiện để có u và v là S2 – 4P ≥ 0.

Dạng 3.1: Giải và biện luận phương trình theo tham số m

Bước 1: Xác định các hệ số a; b; c (hoặc a; b’; c).

Bước 2: Giải phương trình theo m:

+) Với giá trị của m mà a = 0, giải phương trình bậc nhất.

+) Với giá trị của m mà a ≠ 0, giải phương trình bậc hai: Tính Δ = b’2 – ac (hoặc Δ’ = b2 – 4ac), xét các trường hợp của Δ chứa tham số và tìm nghiệm theo tham số.

Bước 3: Kết luận.

Biện luận phương trình:

– Phương trình có nghiệm khi:

+) Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.

+) Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm.

– Phương trình có một nghiệm khi:

+) Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.

+) Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm kép.

– Phương trình có hai nghiệm phân biệt khi: Giá trị của m mà a ≠ 0, phương trình bậc hai có hai nghiệm phân biệt.

Dạng 3.2: Xác định dấu các nghiệm của phương trình

Bước 1: Xác định hệ số.

Bước 2: Tính Δ = b2 – 4ac (hoặc Δ’ = b2 – 4ac) để kiểm tra phương trình có nghiệm hay không.

Bước 3: Trong trường hợp phương trình có nghiệm (Δ ≥ 0 hoặc Δ’ ≥ 0), tính tổng S và tích P của hai nghiệm theo định lý Vi-ét để xét dấu các nghiệm của phương trình.

+) Phương trình có hai nghiệm cùng dấu: P > 0.

+) Phương trình có hai nghiệm dương: Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9.

+) Phương trình có hai nghiệm âm: Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9.

+) Phương trình có hai nghiệm trái dấu: P < 0.

Chú ý: Phương trình có hai nghiệm trái dấu chỉ cần xét P < 0 hoặc a.c < 0.

Bước 4: Kết luận.

Dạng 3.3: Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước

Dạng 3.3.1: Tìm m để phương trình có nghiệm thỏa mãn điều kiện về dấu hoặc thỏa mãn đẳng thức, bất đẳng thức liên hệ giữa các nghiệm

Bước 1: Tìm điều kiện a ≠ 0 (nếu cần) và điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.

Bước 3: Sử dụng hệ thức Vi-ét, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.

Bước 4: Đối chiếu điều kiện và kết luận.

Dạng 3.3.2: Tìm tham số m để phương trình có một nghiệm là x0.

Bước 1: Thay giá trị x0 vào phương trình để tìm tham số.

Bước 2: Thay giá trị của tham số vào phương trình hoặc hệ thức Vi-ét để tìm nghiệm còn lại.

Bước 3: Kết luận.

Dạng 3.3.3: Tìm giá trị của tham số để hai phương trình có ít nhất một nghiệm chung.

Bước 1: Tìm điều kiện để các phương trình có nghiệm.

Bước 2: Tìm nghiệm chung và tìm tham số: Có thể giả sử x0 là nghiệm chung, lập hệ phương trình trình hai ẩn (x0 và tham số) và giải hệ phương trình.

Bước 3: So sánh với điều kiện và kết luận.

B. Các ví dụ điển hình

Ví dụ 1: Tập nghiệm của phương trình x2 + 3x – 1 = 0 là:

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn C

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Ví dụ 2: Giá trị nào sau đây là nghiệm của phương trình 3x2 + 7x + 2 = 0

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn B

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Ví dụ 3: Phương trình x2 – 2mx + m = 0 với m = 1 có tập nghiệm là:

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn C

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Ví dụ 4: Cho phương trình bậc hai (m – 1)x2 – 2mx + m + 1 = 0 (m là tham số). Các giá trị nguyên của m để phương trình có nghiệm nguyên là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn A

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Ví dụ 5: Phương trình x2 + (2m + 1)x + 3m = 0 (với m là tham số) có hai nghiệm phân biệt, trong đó có một nghiệm là x1 = 3, nghiệm còn lại là x2 bằng:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn D

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Ví dụ 6: Tìm hệ thức liên hệ giữa hai nghiệm của phương trình x2 – (m + 3)x + 2m – 5 = 0 không phụ thuộc vào m.

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn A

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Ví dụ 7: Cho phương trình x2 – 2x – 8 = 0 có hai nghiệm x1 và x2. Phương trình bậc hai một ẩn có hai nghiệm là y1 = x1 – 3 và y2 = x2 – 3 là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn C

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án - Toán lớp 9

Ví dụ 8: Giải phương trình x2 – 2x + 1 – m2 = 0 với m là tham số, m ≠ 0.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9

Ví dụ 9: Cho phương trình x2 + √7x + 1 = 0. Khẳng định nào sau đây là đúng?

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9

Ví dụ 10: Số các giá trị nguyên của tham số m để phương trình x2 – 2x + m = 0 có hai nghiệm phân biệt x1; x2 sao cho x12.x22 ≤ 4 là:.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9

Ví dụ 11: Phương trình bậc hai mx2 + (2m + 1)x + 3 = 0 có một nghiệm là x = -1. Giá trị của m và nghiệm còn lại là:

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9

Ví dụ 12: Cho hai phương trình bậc hai x2 + 2x + m = 0 (1) và x2 + mx + 2 = 0 (2) (với m là tham số). Tìm m để hai phương trình có ít nhất một nghiệm chung.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án - Toán lớp 9

Ví dụ 13: Cho phương trình x2 + mx – 6m2 = 0 với m là tham số. Chọn khẳng định sai:

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn A

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án - Toán lớp 9

Ví dụ 14: Cho phương trình mx2 – 2(m + 1)x + m + 2 = 0. Chọn kết luận đúng.

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn B

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án - Toán lớp 9

Ví dụ 15: Khi phương trình x2 + (m + 1)x – m = 0 có nghiệm kép, giá trị của nghiệm kép là:

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn C

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án - Toán lớp 9

Ví dụ 16: Cho phương trình x2 – 2x + 1 – m2 = 0 với m là tham số. Khẳng định nào sau đây là đúng?

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn D

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án - Toán lớp 9

Ví dụ 17: Giá trị nguyên nhỏ nhất của tham số m để phương trình x2 – 2(m + 7)x + m2 – 4 = 0 có hai nghiệm trái dấu là:

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn C

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án - Toán lớp 9

Ví dụ 18: Phương trình 2x2 + (2m – 1)x + m – 1 = 0 có hai nghiệm bằng nhau về giá trị tuyệt đối nhưng trái dấu nhau khi:

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn C

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án - Toán lớp 9

Ví dụ 19: Tìm m để phương trình x2 – 2(m – 2)x – 6m = 0 có nghiệm x1; x2 sao cho biểu thức x12 + x22 đạt giá trị nhỏ nhất.

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn D

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án - Toán lớp 9

Ví dụ 20:Tìm m để mx2 – 2(m + 1)x + m + 3 = 0 là phương trình bậc hai nhận x = -2 là nghiệm.

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn A

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án - Toán lớp 9

Ví dụ 21: Tìm m để hai phương trình x2 + x + m – 2 = 0 (1) và x2 + (m – 2)x + 1 = 0 (2) có nghiệm chung.

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án - Toán lớp 9

Lời giải

Chọn D

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án - Toán lớp 9

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:

  • Cách giải phương trình trùng phương cực hay, có đáp án

  • Cách giải phương trình chứa ẩn ở mẫu cực hay, có đáp án

  • Cách giải phương trình tích cực hay, có đáp án

  • Các dạng bài tập Phương trình quy về phương trình bậc hai cực hay, có đáp án

  • Cách giải bài toán về cấu tạo số bằng cách lập phương trình cực hay, có đáp án

Giới thiệu kênh Youtube VietJack

  • Hỏi bài tập trên ứng dụng, thầy cô VietJack trả lời miễn phí!

Ngân hàng trắc nghiệm lớp 9 tại

khoahoc.vietjack.com

  • Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 9 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí.

Đăng ký ngay!

Tổng đài hỗ trợ đăng ký khóa học: 084 283 45 85

Tổng ôn Ngữ Văn vào 10 – cô Hoàng Tố Nga

4.5 (243)

799,000đs

399,000 VNĐ

Tổng ôn Toán vào 10 – Cô Nguyễn Hồng Nhung

4.5 (243)

799,000đ

399,000 VNĐ

Học tốt toán 9 – Thầy Trần Trung Hải

4.5 (243)

799,000đ

399,000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6:

fb.com/groups/hoctap2k6/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết – Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với

nội quy bình luận trang web

sẽ bị cấm bình luận vĩnh viễn.


Trang trước

Trang sau

chuong-4-ham-so-y-ax2-phuong-trinh-bac-hai-mot-an.jsp


Các loạt bài lớp 9 khác
  • Soạn Văn 9

  • Soạn Văn 9 (bản ngắn nhất)

  • Văn mẫu lớp 9

  • Đề kiểm tra Ngữ Văn 9 (có đáp án)

  • Giải bài tập Toán 9

  • Giải sách bài tập Toán 9

  • Đề kiểm tra Toán 9

  • Đề thi vào 10 môn Toán

  • Chuyên đề Toán 9

  • Giải bài tập Vật lý 9

  • Giải sách bài tập Vật Lí 9

  • Giải bài tập Hóa học 9

  • Chuyên đề: Lý thuyết – Bài tập Hóa học 9 (có đáp án)

  • Giải bài tập Sinh học 9

  • Giải Vở bài tập Sinh học 9

  • Chuyên đề Sinh học 9

  • Giải bài tập Địa Lí 9

  • Giải bài tập Địa Lí 9 (ngắn nhất)

  • Giải sách bài tập Địa Lí 9

  • Giải Tập bản đồ và bài tập thực hành Địa Lí 9

  • Giải bài tập Tiếng anh 9

  • Giải sách bài tập Tiếng Anh 9

  • Giải bài tập Tiếng anh 9 thí điểm

  • Giải sách bài tập Tiếng Anh 9 mới

  • Giải bài tập Lịch sử 9

  • Giải bài tập Lịch sử 9 (ngắn nhất)

  • Giải tập bản đồ Lịch sử 9

  • Giải Vở bài tập Lịch sử 9

  • Giải bài tập GDCD 9

  • Giải bài tập GDCD 9 (ngắn nhất)

  • Giải sách bài tập GDCD 9

  • Giải bài tập Tin học 9

  • Giải bài tập Công nghệ 9

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button