Kiến thức

Nhị thức Newton

Nhị thức Newton.png

Nhị thức Newton.png

Nhị thức Newton là 1 công thức khai triển hàm mũ của tổng. Cụ thể là khai triển một nhị thức bậc n thành một đa thức có n+1 số hạng.

Nhị thức này được độc lập chứng minh bởi hai người:

-Newton tìm ra trong năm 1665.
-James Gregory tìm ra trong năm 1670.

Bạn đang xem: Nhị thức Newton

Mục lục

  • 1 Công thức

  • 2 Tính chất

  • 3 Tam giác Pascal

  • 4 Câu chuyện

    • 4.1 Nhị thức Newton

    • 4.2 Tam giác Pascal

Xem thêm: Cách xác định tâm đường tròn nội tiếp, ngoại tiếp tam giác-Toán lớp 9

Công thức

Xem thêm: Suất điện động tự cảm là gì? Hiện tượng tự cảm là gì?

Tính chất

  • Trong khai triển mũ n có n+1 số hạng
  • Tổng các số mũ của a và b trong mỗi số hạng luôn = n
  • Số mũ của a giảm dần từ n đến 0
  • Số mũ của b tăng dần từ 0 đến n
  • Số hạng tổng quát thứ k+1 là
  • Các hệ số cách đều số hạng đầu và cuối thì bằng nhau:
  • Ta luôn có
  • Đặc biệt:

Xem thêm: Brexit liên tiếp thất bại, Thủ tướng Anh vận động ủng hộ bầu cử sớm

Tam giác Pascal

Tam giác Pascal

Blaise Pascal

Tam giác Pascal là một mảng tam giác của hệ số nhị thức trong tam giác. Thuật toán được đặt theo tên của nhà toán học Pháp nổi tiếng Blaise Pascal.

Câu chuyện

Nhị thức Newton

Để ghi nhớ công lao của Isaac Newton (1642 – 1727) trong việc tìm ra công thức khai triển nhị thức sau, được gọi là nhị thức Newton.

Trên bia mộ của Newton tại tu viện Wesminster (là nơi an nghỉ của Hoàng gia và những người nổi tiếng của nước Anh) người ta còn khắc họa hình Newton cùng với cả nhị thức Newton.
Vậy có phải chăng loài người đã không hề biết gì về công thức khai triển nhị thức trước khi có phát minh của nhà bác học vĩ đại này ?
Theo các văn bản còn lưu giữ được từ rất lâu trước Newton, ngay từ 200 năm trước Công nguyên các nhà toán học Ấn Độ đã quen biết với một bảng tam giác số học. Trong tác phẩm của nhà toán học Trung Quốc Chu Sinh viết từ năm 1303 người ta tìm thấy bảng số sau:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 1 0 1 0 5 1
1 6 1 5 2 0 1 5 6 1
1 7 2 1 3 5 3 5 2 1 7 1
1 8 2 8 5 6 7 0 5 6 2 8 8 1

Rõ ràng đó là các hệ số của công thức khai triển nhị thức Newton từ cấp 0 đến cấp 8, dù nhà toán học này đã không nói gì cho các hệ số tiếp theo cùng công thức tổng quát của chúng, nhưng theo cách thức lập bảng của ông, ta có thể dễ dàng tìm ra quy luật cho phép viết được các hàng mới.
Vào nửa đầu thế kỉ XV trong tác phẩm chìa khóa số học viết bằng tiếng Ả rập của nhà toán học, thiên văn học Xamacan có tên là Giêm Xit-Giaxedin Casi người ta lại gặp tam giác số học mà tác giả đã gọi tên rõ hơn là các hệ số nhị thức cùng với những chỉ dẫn cách thành lập các hàng kế tiếp của nhị thức. Với lối chỉ dẫn (không chứng minh) đó Casi đã cho ta khả năng khai triển nhị thức ở một cấp bất kì.
Có thể coi đó là sự phát biểu bằng văn đầu tiên trong lịch sử của định lí về nhị thức Newton.
Ở châu Âu, tam giác số học được tìm thấy đầu tiên trong công trình của nhà toán học người Đức Stiffel M. Công bố vào năm 1544. Trong công trình này cũng đã chỉ dẫn ra các hệ số của nhị thức cho đến cấp 17.
Gần một trăm năm sau, hoàn toàn độc lập với nhau, các nhà toán học người Anh Bô-rit-gôn (1624), nhà toán học Pháp Fermat (1636) rồi nhà toán học Pháp Pascal (1654) đã đưa ra công thức hoàn hảo về hệ số của nhị thức Newton. Đặc biệt trong công trình mang tên Luận văn về tam giác số học công bố vào năm 1665, Pascal đã trình bày khá chi tiết về tính chất của các hệ số trong tam giác số học và từ đó tam giác số học được sử dụng một cách rộng rãi và tên tam giác Pascal ra đời thay cho tam giác số học.
Rõ ràng mà nói về mặt lịch sử thì tam giác số học đã được các nhà toán học Á đông xét đến trước Pascal rất nhiều.
Vậy vai trò của Newton ở đâu trong quá trình hình thành công thức nhị thức Newton ?
Năm 1676 trong bức thư thứ nhất gửi Ô-đen Hiaro – Chủ tịch Viện Hàn Lâm hoàng gia Anh, Newton đã đưa công thức (1) mà không dẫn giải cách chứng minh. Sau đó ít lâu trong bức thư thứ hai gửi đến Viện Hàn Lâm, Newton đã trình bày rõ ràng bằng cách nào ông đi đến công thức đó. Thì ra bằng cách này Newton đã tìm ra công thức Newton từ năm 1665 khi mà ông chỉ mới 22 tuổi. Nhưng dù vậy thì việc đưa trình công thức của mình Newton cũng không nói được điều gì mới cho các nhà toán học đương thời.
Vậy tại sao công thức không mới đó lại mang tên Newton ?
Vấn đề là ở chỗ ý tưởng của Newton không dừng lại ở việc áp dụng công thức này cho trường hợp các số mũ là số nguyên dương mà cho số mũ bất kì: số dương, số âm, số nguyên và phân số. (ở trung học chỉ học số mũ nguyên dương)
Chính ý tưởng mới đó cho một ý nghĩa lớn lao đối với việc phát triển của toán học. Các nhà toán học đương thời thấy ngay tầm quan trọng của công thức và công thức được áp dụng rộng rãi trong nhiều công trình nghiên cứu toán học, đặc biệt trong đại số và giải tích.
Nhân đây cũng phải nói thêm rằng công thức nhị thức Newton không phải là sự đóng góp lớn nhất của Newton cho toán học. Newton đã đóng góp rất nhiều cho việc mở đầu những hướng toán học cao cấp, đó là các phép tính đối với các đại lượng vô cùng bé. Và do vậy đôi lúc Newton được coi là người sáng lập ra ngành Giải tích toán học.

Tam giác Pascal

Waclaw Sierpinski là một nhà toán học nổi tiếng người Ba Lan. Người ta kể lại rằng ông là người khá lơ đãng. Một hôm, ông và vợ ông phải chuyển nhà. Hai ông bà mang đồ đạc xuống để bên vệ đường rồi bà Sierpinski mới nói với chồng rằng “Bây giờ anh đứng đây coi chừng mười thùng đồ này cho em để em đi gọi taxi”. Vài phút sau bà quay lại thì ông nheo mắt nói với bà “Anh tưởng em nói với anh coi chừng mười thùng đồ, nhưng sao anh đếm chỉ thấy có chín thùng.” Bà vợ hốt hoảng tưởng là ông chồng mình lơ đãng để người ta trộm mất một thùng đồ, “Không, em chắc chắn là mười thùng mà!”, “Không, em đếm lại đi, anh vừa đếm xong, đúng là chín thùng. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9!”

Lấy từ “

https://kien-thuc.fandom.com/vi/wiki/Nhị_thức_Newton?oldid=3861

Community content is available under

CC-BY-SA

unless otherwise noted.

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button