Kiến thức

Viết phương trình mặt cầu có tâm thuộc đường thẳng

Viết phương trình mặt cầu có tâm thuộc đường thẳng

HOCTOAN24H

· 26/04/2016

Với dạng toán viết

phương trình mặt cầu

có tâm thuộc đường thẳng thì đường thẳng của chúng ta có thể cho trước, cũng có thể chúng ta cần phải đi tìm phương trình đường thẳng này. Với dạng toán này thông thường chúng ta phải đưa phương trình đường thẳng về dạng tham số và tọa độ hóa tâm của mặt cầu theo đường thẳng tham số đó. Dựa vào một vài điều kiện bài toán cho thêm, chúng ta sẽ tìm được tọa độ tâm, bán kính và phương trình của mặt cầu.

Bạn đang xem: Viết phương trình mặt cầu có tâm thuộc đường thẳng

Viết phương trình mặt cầu có tâm thuộc đường thẳng

Bài tập 1: Trong không gian với với

hệ tọa độ Oxyz

cho hai điểm $A(1; 2; -2), B(0; 3; 4)$ và đường thẳng $d:left{begin{array}{ll}x=1+2t\y=2-3t\z=3-tend{array}right.$. Lập phương trình mặt cầu có tâm thuộc d và mặt cầu đi qua 2 điểm $A, B$.

Phân tích:

  • Mặt cầu có tâm thuộc đường thẳng => tọa độ hóa tâm I theo t
  • Mặt cầu đi qua A và B => $IA=IB$ => giá trị của t => phương trình mặt cầu.

Cụ thể:

Gọi $I$ là tâm mặt cầu cần tìm.

Vì $Iin d$ nên ta có tọa độ tâm $I$ là: $I(1+2t;2-3t;3-t)$

Vì mặt cầu đi qua hai điểm $A(1; 2; -2), B(0; 3; 4)$ nên ta có:

$IA=IB$

$Leftrightarrow sqrt{(2t)^2+(3t)^2+(t-5)^2}=sqrt{(1+2t)^2+(1+3t)^2+(1+t)^2}$

$Leftrightarrow 22t=22$

$Leftrightarrow t=1$

Với $t=1$ ta có tọa độ tâm $I$ là: $I(3;-1;2)$ và bán kính của mặt cầu là: $R=IA=IB=sqrt{29}$

Vậy phương trình mặt cầu có tâm thuộc đường thẳng $d$ và đi qua hai điểm A, B là:

$(x-3)^2+(y+1)^2+(z-2)^2=29$

Tham khảo bài giảng:

  • Lập phương trình mặt cầu tiếp xúc với mặt phẳng

Bài tập 2: Trong không gian với hệ tọa độ Oxyz cho điểm $A(-1;4;6)$ và điểm $B(-2;3;6)$. Viết phương trình mặt cầu $(S)$ có tâm thuộc trục $Ox$ và đi qua điểm A và điểm B. Tìm tọa độ các giao điểm của (S) với trục $Oz$.

Phân tích:

  • Bài toán này cho tâm mặt cầu thuộc trục $Ox$ => cần biết được phương trình trục $Ox$.
  • Để tìm giao của mặt cầu với trục $Oz$ các bạn cũng cần biết được phương trình trục $Oz$.

Bài tập 3: Trong không gian với hệ tọa độ Oxyz cho đường thẳng d có phương trình $frac{x+2}{1}=frac{y-1}{-1}=frac{z-2}{2}$ và hai mặt phẳng $(P): x+2y+2z+3=0$ và $(Q): x-2y-2z+7=0$. Viết phương trình mặt cầu có tâm thuộc đường thẳng $d$ đồng thời $(S)$ tiếp xúc với $(P), (Q)$.

Phân tích:

  • Tâm mặt cầu thuộc đường thẳng $d$ => tọa độ hóa tâm mặt cầu theo $d$.
  • Mặt cầu $(S)$ tiếp xúc với hai mặt phẳng $(P); (Q)$ => Điều kiện tiếp xúc.

Cụ thể:

Phương trình tham số của đường thẳng $d$ là: $left{begin{array}{ll}x=-2+t\y=1-t\z=2+2tend{array}right.$

Gọi tâm mặt cầu là $I$. Vì điểm $I$ thuộc đường thẳng $d$ nên tọa độ của $I$ là: $I(-2+t;1-t;2+2t)$

Khoảng cách từ tâm $I$ tới mặt phẳng $(P)$ là:

$d_1=frac{|-2+t+2(1-t)+2(2+2t)+3|}{3}=frac{|3t+7|}{3}$.

Khoảng cách từ tâm $I$ tới mặt phẳng $(Q)$ là:

$d_2=frac{|-2+t-2(1-t)-2(2+2t)+7|}{3}=frac{|-t-1|}{3}$.

Vì mặt cầu $(S)$ tiếp xúc với hai mặt phẳng $(P)$ và $(Q)$ nên ta có:

$d_1=d_2$

$Leftrightarrow |3t+7|=|-t-1|$

$Leftrightarrow left[begin{array}{ll}t=-2\t=-3end{array}right.$

  • Với $t=-2$ ta có tọa độ tâm $I(-4;3;-2)$ và bán kính của mặt cầu là $R=d_1=1$. Phương trình mặt cầu cần tìm là: $(x+4)^2+(y-3)^2+(z+2)^2=1$
  • Với $t=-3$ ta có tọa độ tâm $I(-5;4;-4)$ và bán kính của mặt cầu là $R=d_1=2$. Phương trình mặt cầu cần tìm là: $(x+5)^2+(y-4)^2+(z+4)^2=4$

Bài tập 4:  Trong không gian với hệ tọa độ Oxyz cho mặt phẳng $(P): x – y + z – 1 = 0$ và điểm $A(1; -1; 2)$. Viết phương trình đường thẳng $d$ đi qua $A$ và vuông góc với $(P)$. Viết phương trình mặt cầu $(S)$ có tâm thuộc đường thẳng $d$, đi qua $A$ và tiếp xúc với $(P)$.

Phân tích:

  • Với bài toán này trước tiên các bạn cần 

    lập phương trình đường thẳng

    d. Vì đường thẳng $d$ vuông góc với mặt phẳng $(P)$ nên sẽ tìm được vectơ pháp tuyến + đi qua điểm $A$ => phương trình đường thẳng $d$.

  • Đưa phương trình đường thẳng $d$ về dạng tham số để biểu diễn tọa độ tâm mặt cầu. Dựa vào điều kiện mặt cầu đi qua $A$ và tiếp xúc với $(P)$ sẽ có được phương trình mặt cầu.

Bài tập 5: Trong không gian với hệ tọa độ Oxyz cho hai điểm $A(0; 0; -3), B(2; 0; -1)$ và mặt phẳng $(P): 3x-y-z+1=0$. Viết phương trình mặt cầu $(S)$ có tâm thuộc $AB$, bán kính bằng $2sqrt{11}$ và tiếp xúc với mặt phẳng (P).

Đáp án: Có 2 phương trình mặt cầu $(S)$:

$(x-frac{21}{2})^2+y^2+(z-frac{21}{2})^2=22$

$(x+frac{23}{2})^2+y^2+(z+frac{23}{2})^2=22$

Bài tập 6: Trong không gian với hệ tọa độ Oxyz cho $(P): 2x-y-2z-2=0$ và đường thẳng $d: frac{x}{-1}=frac{y+1}{2}=frac{z-2}{1}$. Viết phương trình mặt cầu có tâm thuộc $d$, cách mặt phẳng $(P)$ một khoảng bằng $2$ và cắt mặt phẳng $(P)$ theo giao tuyến là

đường tròn có bán kính

bằng $3$.

Hướng dẫn:

  • Đưa đường thẳng $d$ về dạng tham số, biểu diễn tọa độ tâm $I$ theo $d$.
  • Dựa vào

    khoảng cách

    từ tâm mặt cầu tới đường thẳng $d$ => tìm đc tọa độ tâm $I$.

  • Dựa vào mặt cầu cắt $(P)$ theo giao tuyến là đường tròn có bán kính bằng $3$ => bán kính mặt cầu.

Lời kết

Như vậy với dạng toán lập phương trình mặt cầu biết tâm thuộc đường thẳng thì chúng ta cần chú ý tới việc biến đổi

phương trình đường thẳng từ dạng chính tắc

hay tổng quát sang dạng tham số. Cần nắm thêm các công thức khoảng cách, một số tính chất của đường tròn, mặt phẳng tiếp diện, điều kiện tiếp xúc…thì các bạn sẽ đơn giản hóa được mọi bài toán. Hãy để lại cảm nhận của bạn về bài giảng và nhớ subscriber để nhận bài giảng mới nhất.

SUB ĐĂNG KÍ KÊNH GIÚP THẦY NHÉ

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button