Kiến thức

Viết Phương Trình Tiếp Tuyến Của Đường Tròn Đi Qua 1 Điểm, Đi Qua 1 Điểm

Bạn đang xem: Viết Phương Trình Tiếp Tuyến Của Đường Tròn Đi Qua 1 Điểm, Đi Qua 1 Điểm

Viết phương trình tiếp tuyến của đường tròn đi qua 1 điểm

Cho khoảng cách từ tâm I của đường tròn (C) tới

*

 bằng R, ta tính được m; thay m vào (1) ta được phương trình tiếp tuyến.

Bạn đang xem:

Viết phương trình tiếp tuyến của đường tròn đi qua 1 điểm

* Ghi chú: Ta luôn luôn tìm được hai đường tiếp tuyến. (h. 74)

III. Tiếp tuyến

*

 song song với một phương cho sẵn có hệ số góc k.

Phương trình của

*

 có dạng:

(m chưa biết)

Cho khoảng cách từ tâm I đến (D) bằng R, ta tìm được m.

* Ghi chú: Ta luôn luôn tìm được hai đường tiếp tuyến (h.75)

*

B. Bài tập vận dụng

Câu 1: Cho đường tròn $left( C right):{{x}^{2}}+{{y}^{2}}+2x-4y=0$

a) Tìm tâm và bán kính của $left( C right)$

b) Viết pt tiếp tuyến của $left( C right)$ tại điểm $Aleft( 1;1 right)$

c) Viết pt tiếp tuyến của $left( C right)$ đi qua điểm $Bleft( 4;7 right)$

d) Viết pt tiếp tuyến của  $left( C right)$ biết tiếp tuyến  song song với đường thẳng $3x+4y+1=0$

e) Viết pt tiếp tuyến của $left( C right)$ biết tiếp tuyến vuông góc với đường thẳng $2x+y-3=0$

Giải:

a) $left( C right)$ có tâm $Ileft( -1;2 right);$ bán kính $R=sqrt{5}$

b) Gọi $Delta $ là tiếp tuyến cần tìm

$Delta $ đi qua $Aleft( 1;1 right)$ và nhận $overrightarrow{IA}=left( 2;-1 right)$ làm vtpt

Phương trình của $Delta $ là: $2left( x-1 right)-1left( y-1 right)=0Leftrightarrow 2x-y-1=0$

c) + Gọi $Delta $ là phương trình tiếp tuyến của đường tròn với vtpt $vec{n}=left( a;b right)$

*

Phương trình $Delta :quad aleft( x-4 right)+bleft( y-7 right)=0quad left( {{a}^{2}}+{{b}^{2}}ne 0 right)$

$Leftrightarrow ax+by-4a-7b=0$

+ $left( C right)$ tiếp xúc với

*

 tức là:

*

+ Chọn $b=1Rightarrow left( * right)$ trở thành: 

*

+ Với

, pttt phải tìm là: $x-2y+10=0$

Với $a=-2$, pttt phải tìm là: $2x-y-1=0$

d) $Delta //d:3x+4y+1=0Rightarrow $phương trình $Delta $ có dạng: $3x+4y+c=0$

$Delta $ tiếp xúc với 

*
*

Vậy có hai tiếp tuyến cần tìm là: ${{Delta }_{1}}:3x+4y+5sqrt{5}-5=0;{{Delta }_{2}}:3x+4y-5sqrt{5}-5=0$

e) $Delta bot d:2x+y-3=0Rightarrow $ phương trình $Delta $ có dạng: $x-2y+c=0$

$Delta $ tiếp xúc với 

*

Vậy có hai tiếp tuyến cần tìm là: ${{Delta }_{1}}:x-2y+10=0;{{Delta }_{2}}:x-2y=0$

Câu 2: Cho đường tròn $left( C right):{{left( x-2 right)}^{2}}+{{left( y-1 right)}^{2}}=20$. Lập phương trình tiếp tuyến của đường tròn $left( C right)$ có hệ số góc bằng 2 .

Giải:

+ Đường tròn $left( C right)$ có tâm $Ileft( 2;1 right);bktext{ }R=2sqrt{5}$

+ Gọi $Delta $ là tiếp tuyến của đường tròn

+ Đường thẳng $Delta $ có hệ số góc bằng 2 nên pt $Delta $ có dạng: $y=2x+mLeftrightarrow 2x-y+m=0$

+ Đường thẳng $Delta $ là tiếp tuyến của đường tròn 

*

Vậy có 2 tiếp tuyến cần tìm là: ${{Delta }_{1}}:2x-y+7=0;{{Delta }_{2}}:2x-y-13=0$

Câu 3: Cho đường tròn $left( C right):{{left( x-1 right)}^{2}}+{{left( y+1 right)}^{2}}=10$. Lập pt tiếp tuyến của đường tròn $left( C right)$ biết tiếp tuyến tạo với $d:2x+y-4=0$ một góc bằng ${{45}^{0}}$

Giải:

+ Giả sử tiếp tuyến $Delta $ có phương trình: (1)

$Delta $ là tiếp tuyến của 

*

+ $Delta$ tạo với $d$ một góc ${{45}^{0}}$

*

Với $c=14b$ thay vào (1) ta được: $-3bx+by+14b=0Leftrightarrow -3x+y+14=0$

Với $c=-6b$ thay vào (1) ta được: $-3bx+by-6b=0Leftrightarrow 3x-y+6=0$

+ Với $a=frac{b}{3}$, giải tương tự

C. Bài tập rèn luyện

Câu 1: Trong các pt sau, pt nào là pt đường tròn, chỉ rõ tâm và bán kính:

a) ${{x}^{2}}+{{y}^{2}}-2x-4y-4=0$

b) ${{x}^{2}}+{{y}^{2}}-4x+6y+12=0$

c) $-{{x}^{2}}-{{y}^{2}}-2x-y-1=0$

d) $2{{x}^{2}}+{{y}^{2}}-2x-2y-2=0$

e) ${{x}^{2}}+{{y}^{2}}-2x-2y-2=0$

Câu 2: Lập phương trình đường tròn trong các trường hợp sau:

a) Tâm $Ileft( 1;-3 right);$ bán kính $R=1$

b) Đi qua điểm $Aleft( 3;4 right)$ và tâm là gốc tọa độ

c) Đường kính $AB$ với $Aleft( 1;1 right)$ và $Bleft( 3;5 right)$

d) Đi qua điểm $Aleft( 3;1 right);Bleft( 5;5 right)$ và tâm I nằm trên trục tung.

e) Đi qua ba điểm $Aleft( 7;1 right);Bleft( -3;-1 right);Cleft( 3;5 right)$

f) Tâm $Ileft( 5;6 right)$ và tiếp xúc với đường thẳng $d:3x-4y-6=0$

g) Tâm $Ileft( 1;3 right)$ và đi qua điểm $Aleft( 3;1 right)$

h) Tâm $Ileft( -2;0 right)$ và tiếp xúc với đường thẳng $d:2x+y-1=0$

i) Đi qua điểm $Mleft( 2;1 right)$ và tiếp xúc với hai trục tọa độ

j) Đi qua hai điểm $Mleft( 1;1 right);Nleft( 1;4 right)$ và tiếp xúc với trục Ox

k) Đi qua điểm $Aleft( 3;1 right);Bleft( 5;5 right)$ và tâm I nằm trên trục hoành Ox

l) Đi qua điểm $Aleft( 0;1 right);Bleft( 1;0 right)$ và tâm I nằm trên $d:x+y+2=0$

m) Đi qua 3 điểm $Aleft( 1;1 right);Bleft( 3;-2 right);Cleft( 4;3 right)$ (gợi ý: tam giác ABC vuông tại A)

n) Đi qua 3 điểm $Aleft( 1;frac{sqrt{3}}{3} right);Bleft( 1;-frac{sqrt{3}}{3} right);Cleft( 0;0 right)$ (gợi ý tam giác ABC đều)

o) $left( C right)$ đi qua điểm $Mleft( 4;2 right)$ và tiếp xúc với các trục tọa độ.

Xem thêm:

Hướng Dẫn Cách Đổi Tên Wifi Vnpt Đơn Giản, Đổi Tên Wifi, Thay Wifi Name Tp

Câu 3: Viết phương trình tiếp tuyến của đường tròn ${{x}^{2}}+{{y}^{2}}=4$ trong mỗi trường hợp sau:

a) Tiếp tuyến song song với $d:3x-y+17=0$

b) Tiếp tuyến vuông góc với $d:x+2y-5=0$

c) Tiếp tuyến đi qua điểm $Aleft( 2;-2 right)$

Câu 4: Cho điểm $Mleft( 2;3 right)$. Lập pt tiếp tuyến của đường tròn $left( C right)$ đi qua điểm M

a) $left( C right):{{left( x-3 right)}^{2}}+left( y-1 right)=5$

b) $left( C right):{{x}^{2}}+{{y}^{2}}-4x+2y-11=0$

Câu 5:  Kiểm lại rằng điểm ở trên đường (C) có phương trình:

. Tìm phương trình tiếp tuyến với (C) tại M0.

Câu 6: Viết phương trình tiếp tuyến với đường tròn (C): phát xuất từ

Câu 7: Cho đường tròn (C) có phương trình: . Tìm phương trình tiếp tuyến với (C) có hệ số góc là -2; định rõ tọa độ các tiếp điểm.

Câu 8: Cho đường tròn (C), điểm A và đường thẳng d.

a. Chứng tỏ điểm A ở ngoài (C).

b. Viết phương trình tiếp tuyến của (C) kẻ từ A.

c. Viết phương trình tiếp tuyến của (C) vuông góc với d.

Xem thêm:

Mẫu Đơn Xin Cấp Điện 3 Pha Cho Gia Đình, Mẫu Đơn Xin Lắp Đặt Điện 3 Pha

d. Viết phương trình tiếp tuyến của (C) song song với d.

Đáp số gợi ý

Câu 2:

a. ${{left( x-1 right)}^{2}}+{{left( y+3 right)}^{2}}=1$

b. ${{x}^{2}}+{{y}^{2}}=25$

c. ${{left( x-2 right)}^{2}}+{{left( y-3 right)}^{2}}=5$

d. ${{x}^{2}}+{{left( y-5 right)}^{2}}=25$

e. ${{x}^{2}}+{{y}^{2}}-4x-22=0$

f. ${{left( x-5 right)}^{2}}+{{left( y-6 right)}^{2}}=9$

g. ${{left( x-1 right)}^{2}}+{{left( y-3 right)}^{2}}=8$

h. ${{left( x+2 right)}^{2}}+{{y}^{2}}=5$

i. ${{left( x-1 right)}^{2}}+{{left( y-1 right)}^{2}}=frac{25}{4};{{left( x-5 right)}^{2}}+{{left( y-5 right)}^{2}}=25$

j. ${{left( x+1 right)}^{2}}+{{left( y-frac{5}{2} right)}^{2}}=frac{25}{4};{{left( x-3 right)}^{2}}+{{left( y-frac{5}{2} right)}^{2}}=frac{25}{4}$

k.${{left( x-10 right)}^{2}}+{{y}^{2}}=50$

l. ${{x}^{2}}+{{y}^{2}}+2x+2y-3=0$

m.${{left( x-frac{7}{2} right)}^{2}}+{{left( y-frac{1}{2} right)}^{2}}=frac{13}{2}$

n.${{left( x-frac{2}{3} right)}^{2}}+{{y}^{2}}=frac{4}{9}$

o.${{left( x-2 right)}^{2}}+{{left( y-2 right)}^{2}}=4;{{left( x-10 right)}^{2}}+{{left( y-10 right)}^{2}}=100$

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button