Kiến thức

Thành viên:Havanviet07 – Wikipedia tiếng Việt

Thành viên:Havanviet07

Bách khoa toàn thư mở Wikipedia

Bước tới điều hướng

Bước tới tìm kiếm

Lịch sử toán học

Khái niệm về toán :

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng, cấu trúc, không gian, và sự thay đổi. Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.

Từ

toán học

có nghĩa là “

khoa học

,

tri thức

hoặc học tập”. Ngày nay, thuật ngữ “toán học” chỉ một bộ phận cụ thể của tri thức – ngành nghiên cứu suy luận về lượng, cấu trúc, và sự thay đổi. Lĩnh vực của ngành học về Lịch sử Toán học phần lớn là sự nghiên cứu nguồn gốc của những

khám phá

mới trong toán học, theo nghĩa hẹp hơn là nghiên cứu các

phương pháp

và kí hiệu toán học chuẩn trong quá khứ.

Trước thời kì hiện đại và sự phổ biến rộng rãi tri thức trên toàn

thế giới

, các ví dụ trên văn bản của các phát triển mới của toán học chỉ tỏa sáng ở những vùng, miền cụ thể. Các văn bản toán học cổ nhất từ

Lưỡng Hà

cổ đại (Mesopotamia) khoảng 1900 TCN (Plimpton 322),

Ai Cập cổ đại

khoảng 1800 TCN (Rhind Mathematical Papyrus),

Vương quốc Giữa Ai Cập

khoảng 1300-1200 TCN (Berlin 6619) và Ấn Độ cổ đại khoảng 800 TCN (Shulba Sutras). Tất cả các văn tự này có nhắc đến

Định lý Pythagore

; đây có lẽ là phát triển toán học rộng nhất và cổ nhất sau

số học

cổ đại và

hình học

.

Những cống hiến của

Hy Lạp cổ đại

với toán học, nhìn chung được coi là một trong những cống hiến quan trọng nhất, đã phát triển rực rỡ cả về phương pháp và chất liệu chủ đề của toán học

[1]

.

Một đặc điểm đáng chú ý của lịch sử toán học cổ và trung đại là theo sau sự bùng nổ của các phát triển toán học thường là sự ngưng trệ hàng thế kỉ. Bắt đầu vào

Thời kì Phục Hưng

tại

Ý

vào thế kỉ 16, các phát triển toán học mới, tương tác với các phát hiện khoa học mới, đã được thực hiện với

tốc độ

ngày càng tăng, và điều này còn tiếp diễn cho tới hiện tại.

Toán học thời sơ khai

Nguồn gốc[

sửa

|

sửa mã nguồn

]

Rất lâu trước những văn tự cổ nhất, đã có những bức vẽ cho thấy một kiến thức về toán học và đo

thời gian

dựa trên

sao trời

. Ví dụ các

nhà cổ sinh vật học

đã khám phá ra các mảnh đất thổ hoàng trong một

hang động

Nam Phi

được trang trí bởi các hình khắc hình học với thời gian khoảng 70.000 TCN

[2]

. Cũng các di khảo

tiền sử

được tìm thấy ở châu Phi và

Pháp

, thời gian khoảng giữa 35000 TCN và 20000 TCN

[3]

, cho thấy các cố gắng sơ khai nhằm

định lượng

thời gian

[4]

.

Các bằng chứng còn tồn tại cho thấy việc đếm thời sơ khai chủ yếu là do phụ nữ, những người giữ các vật đánh dấu chu kì sinh họchàng tháng; ví dụ hai mươi tám, hai mươi chín, hoặc ba mươi vạch trên

xương

hoặc hòn đá, theo sau là một vạch cách biệt khác. Hơn nữa, các thợ săn đã có khái niệm về một, hai và nhiều cũng như không khi xem xét số bầy

thú

[5]

[6]

.

Xương Ishango được tìm thấy ở thượng nguồn

sông Nil

(phía bắc

Cộng hòa Dân chủ Congo

), thuộc thời kì 20.000 TCN. Bản dịchthông dụng nhất của hòn đá cho ta thấy nó là bằng chứng sớm nhất

[7]

thể hiện một dãy các

số nguyên tố

và phép nhân Ai Cập cổ đại. Người Ai Cập vào thiên niên kỉ thứ 5 TCN đã vẽ các bức tranh về thiết kế hình học và không gian. Người ta đã khẳng định các hòn đá tế thần ở

Anh

Scotland

từ thiên niên kỉ thứ 3 TCN, bao gồm cả các ý tưởng hình học như

hình tròn

,

hình elíp

bộ ba Pythagore

trong thiết kế của nó

[8]

.

Nền toán học sớm nhất từng biết trong

Ấn Độ cổ đại

nằm vào khoảng 3000 TCN – 2600 TCN ở nền văn minh thung lũng Indus (nền văn minh Harappan) của Bắc Ấn Độ và

Pakistan

, đã phát triển một hệ thống các đơn vị đo Thung lũng Indus cổ đại sử dụng hệ cơ số 10, một công nghệ

gạch

đáng ngạc nhiên sử dụng các tỉ lệ, các đường đi được đặt trên một

góc vuông

hoàn hảo, và một số các hình hình học và thiết kế, bao gồm hình hộp chữ nhật, thùng phi,

hình nón

, hình trụ và các bức vẽ các

hình tròn

hình tam giác

cắt nhau và đồng qui. Các dụng cụ toán học tìm được bao gồm một thước đo cơ số 10 với độ chia nhỏ và chính xác, một dụng cụ vỏ sò hoạt động như một chiếc com pa để đo góc trên mặt phẳng hoặc theo các bội của 40-360 độ, một dụng cụ vỏ sò để đo 8-12 phần của đường chân trời và bầu trời, và một dụng cụ để đo vị trí của các sao nhằm mục đích định hướng. Bản viết tay Indus vẫn chưa được giải nghĩa; do đó ta biết được rất ít về các dạng viết của toán học Harappan. Các bằng chứng khảo cổ đã làm các nhà sử học tin rằng nền văn minh này đã sử dụng hệ đếmcơ số 8 và đạt được các kiến thức về tỉ lệ giữa

chu vi

của đường tròn đối với

bán kính

của nó, do đó tính được số

π

[9]

.

Xem thêm: Định luật JUN-LEN-XƠ (Joule-Lenz), Công thức tính Định luật Jun-Len-xơ và Bài tập

Lưỡng Hà[

sửa

|

sửa mã nguồn

]

Toán học

Babylon

là ám chỉ bất kì nền toán học nào thuộc về cư dân

Lưỡng Hà

(

Iraq

ngày nay) từ buổi đầu Sumer cho đến đầu thời kì Hy Lạp hóa. Nó được đặt tên là toán học Babylon là do vai trò trung tâm của Babylon là nơi nghiên cứu, nơi đã không còn tồn tại sau thời kì Hy Lạp hóa. Các nhà toán học Babylon đã trộn với các nhà toán học Hy Lạp để phát triển toán học Hy Lạp. Sau đó dưới Đế chế Arab, Iraq/Lưỡng Hà, đặc biệt là

Baghdad

, một lần nữa trở thành trung tâm nghiên cứu quan trọng cho toán học Hồi giáo.

Đối lập với sự thiếu thốn nguồn tài liệu của toán học Hy Lạp, sự hiểu biết về toán học Babylon của chúng ta là từ hơn 400 miếng đất sét khai quật được từ những năm 1850. Viết bằng kí tự Cuneiform, các miếng đất sét này được viết trong khi đất sét còn ẩm, và được nung cứng trong lò hoặc bằng nhiệt từ

Mặt Trời

. Một số trong đó có vẻ là bài tập về nhà.

Bằng chứng sớm nhất về các văn tự toán học là từ thời những người Sumer cổ đại, những người đã xây nên nền văn minh sớm nhất ở Lưỡng Hà. Họ đã phát triển một hệ

đo lường

phức tạp từ 3000 TCN. Khoảng 2500 TCN trở về trước, người Sumer đã viết những bảng nhân trên đất sét và giải các bài tập hình học và các bài toán chia. Dấu vết sớm nhất của hệ ghi số Babylon cũng là trong khoảng thời gian này

[10]

.

Một lượng lớn các tấm đất sét đã được phục hồi là vào khoảng 1800 TCN tới 1600 TCN, và bao gồm các chủ đề về

phân số

,

đại số

,

phương trình bậc ba

và bậc bốn, các tính toán về các

bộ ba Pythagore

(xem Plimpton 322)

[11]

. Các tấm này cũng bao gồm cả bảng nhân, bảng

lượng giác

và các phương pháp giải

phương trình tuyến tính

phương trình bậc hai

. Tấm đất sét YBC 7289 đã đưa ra một xấp xỉ của số √2 chính xác tới năm chữ số thập phân.

Toán học Babylon được viết bằng hệ cơ số 60. Do việc này mà ngày nay ta sử dụng 60 giây trong một phút, 60 phút trong một giờ và 360 (60 × 6)

độ

trong một vòng tròn. Các tiến bộ của người Babylon trong toán học phát triển dễ dàng bởi số 60 có rất nhiều ước số. Cũng vậy, không giống người Ai Cập, Hy Lạp và La Mã, người Babylon có một hệ ghi số với cách viết số chia theo hàng, trong đó các chữ số viết ở cột bên trái thể hiện giá trị lớn hơn, giống như

hệ thập phân

. Thế nhưng họ lại thiếu một kí hiệu tương đương của dấu thập phân, và do đó hàng trong cách viết số thường được suy ra từ ngữ cảnh.

Ai Cập[

sửa

|

sửa mã nguồn

]

Toán học Ai Cập là ám chỉ toán học được viết dưới

tiếng Ai Cập

.

Toán học

Ai Cập cổ đại

được đánh dấu bởi nhân vật truyền thuyết

Thoth

, người được coi là đã đặt ra mẫu tự Ai Cập, hệ thống

chữ số

, toán học và

thiên văn học

, là vị thần của

thời gian

.

Từ thời kì Hy Lạp hóa,

tiếng Hy Lạp

đã thay thế tiếng Ai Cập trong ngôn ngữ viết của các nhà học giả

Ai Cập

, và từ thời điểm này, toán học Ai Cập hợp nhất với toán học Hy Lạp và Babylon để phát triển toán học Hy Lạp. Nghiên cứu toán học ở Ai Cập sau đó được tiếp tục dưới Đế chế Arab như là một phần của toán học Hồi giáo, khi

tiếng Ả Rập

trở thành ngôn ngữ viết của các nhà học giả Ai Cập.

Văn tự toán học cổ nhất tìm được cho tới nay là giấy cói Moskva, một văn tự bằng giấy cói của Vương quốc giữa Ai Cập vào khoảng 2000—1800 mà ngày nay ta gọi là “bài toán chữ”, rõ ràng là chỉ để giải trí. Một bài toán được coi là quan trọng ở mức nói riêng bởi nó đưa ra phương pháp tìm thể tích của một hình cụt: “Nếu bạn biết: một hình chóp cụt có chiều cao 6, diện tích đáy lớn 4, diện tích đáy nhỏ 2. Bạn sẽ bình phương số 4 này, được 16. Bạn sẽ nhân đôi 4, được 8. Bạn sẽ bình phương 2, được 4. Bạn sẽ cộng 16, 8, và 4 được 28. Bạn sẽ lấy một phần ba của 6, được 2. Bạn nhân 28 với 2 được 56. Và 56 là số bạn cần tìm.”

Giấy cọ Rhind (khoảng 1650 TCN) là một văn bản toán học Ai Cập quan trọng khác, một hướng dẫn trong số học và hình học. Cùng với việc đưa ra các công thức diện tích và phương pháp nhân, chia và làm việc với phân số đơn vị, nó cũng chứa các bằng chứng về các kiến thức toán học khác (xem [2]) bao gồm

hợp số

số nguyên tố

;

trung bình cộng

,

trung bình nhân

trung bình điều hòa

; và hiểu biết sơ bộ về

sàng Eratosthenes

số hoàn hảo

. Nó cũng chỉ ra cách giải

phương trình tuyến tính

bậc một cũng như

cấp số cộng

cấp số nhân

.

Cũng vậy, ba thành phần hình học có trong giấy cọ Rhind nói đến những kiến thức đơn giản nhất của

hình học giải tích

: (1) Đầu tiên và quan trọng nhất, làm thế nào để xấp xỉ số π chính xác tới dưới một phần trăm; (2) thứ hai, một cố gắng cổ đại trong việc cầu phương hình tròn; (3) và thứ ba, sự sử dụng sớm nhất từng biết về

lượng giác

.

Cuối cùng, giấy cọ Berlin cũng cho thấy người Ai Cập cổ đại có thể giải

phương trình đại số

bậc hai.

Toán học Hy Lạp và Hy Lạp hóa cổ đại (khoảng 550 TCN-300)

Toán học Hy Lạp là ám chỉ toán học được viết bằng

tiếng Hy Lạp

khoảng giữa 600 TCN và 450

[12]

. Các nhà toán học Hy Lạp sống ở các thành phố rải rác trên toàn bộ

Địa Trung Hải

, từ Ý tới Bắc Phi, nhưng lại thống nhất về văn hóa và ngôn ngữ. Toán học Hy Lạp đôi khi được gọi là toán học Hellenistic (Hy Lạp hóa).Toán học Hy Lạp đã trở nên phức tạp hơn rất nhiều so với các nền văn hóa trước đó. Tất cả các ghi chép còn tồn tại của các nền toán học tiền Hy Lạp đều cho thấy việc sử dụng suy luận qui nạp, nghĩa là, các quan sát liên tục được sử dụng để lập nên các phép đo dựa trên kinh nghiệm. Người Hy Lạp sử dụng lí luận logic để đạt được các kết luận từ các định nghĩa và tiên đề

[13]

.Toán học Hy Lạp dường như bắt đầu với

Thales

(khoảng 624 – khoảng 546 TCN) và

Pythagoras

(khoảng 582 — khoảng 507 TCN). Mặc dù tầm ảnh hưởng không còn, họ có thể vẫn phát triển ý tưởng từ toán học Ai Cập, Babylon, và có thể cả Ấn Độ. Theo truyền thuyết, Pythagoras đã chu du tới Ai Cập để học toán học, hình học, và thiên văn từ các đạo sĩ Ai Cập.

Thales đã sử dụng

hình học

để giải các bài toán như là tính chiều cao của các hình chóp và khoảng cách từ các tàu tới bờ biển. Pythagoras được coi là người đầu tiên đưa ra chứng minh cho

định lý Pythagore

, mặc dù phát biểu của định lý đã đi qua một chặng đường lịch sử dài. Trong lời bình luận về

Euclid

, Proclus phát biểu rằng Pythagoras đã diễn đạt định lý mang tên ông và dựng nên

bộ ba Pythagore

một cách đại số hơn là hình học.

Trường học

của

Plato

có câu khẩu hiệu: “Không để những thứ nông cạn trong hình học vào đây.”

Học thuyết Pythagoras đã khám phá ra sự tồn tại của các số hữu tỉ. Eudoxus (408 – khoảng 355 TCN) đã phát minh ra phương pháp vét cạn, tiền thân của khái niệm hiện đại

tích phân

.

Aristotle

(384 – khoảng 322 TCN) đã lần đầu viết ra các luật về

logic

. Euclid (khoảng 300 TCN) là ví dụ sớm nhất của một khuôn mẫu mà vẫn còn được sử dụng cho đến ngày nay, định nghĩa, tiên đề, định lý, chứng minh. Ông cũng nghiên cứu về các đường conic. Cuốn sách của ông, Cơ bản, được tất cả những người có học biết đến ở phương Tây cho đến giữa thế kỉ 20

[14]

. Thêm vào các định lý quen thuộc của hình học, như

định lý Pythagore

, Cơ bản còn có cả chứng minh rằng căn bậc hai của hai là số vô tỉ và có vô hạn

số nguyên tố

.

Sàng Eratosthenes

(khoảng 230 TCN) đã được sử dụng để tìm các số nguyên tố.

Một số người nói rằng người vĩ đại nhất trong các nhà toán học Hy Lạp, nếu không muốn nói là mọi thời đại, là

Archimedes

(287—212 TCN) xứ Syracuse. Theo như Plutarch, ở tuổi 75, trong khi đang vẽ các công thức toán học ở trên cát, ông đã bị một tên lính La Mã dùng giáo đâm chết. Roma cổ đại để lại ít bằng chứng về sự quan tâm vào toán học lý thuyết.

Toán học Ấn Độ cổ đại (khoảng 1500 TCN-200 CN)

Toán học Vedic bắt đầu vào đầu thời kì Đồ Sắt, với Shatapatha Brahmana (khoảng thế kỉ 9 TCN), trong đó có xấp xỉ số

π

chính xác tới 2 chữ số thập phân

[15]

và Sulba Sutras (khoảng 800-500 TCN) là các văn bản

hình học

sử dụng

số vô tỉ

,

số nguyên tố

, luật ba, và căn bậc ba; tính

căn bậc hai

của 2 tới năm chữ số thập phân; đưa ra phương pháp cầu phương hình tròn, giải

phương trình tuyến tính

phương trình bậc hai

; phát triển

bộ ba Pythagore

theo phương pháp đại số, phát biểu và nêu chứng minh cho

Định lý Pythagore

.

Pāṇini (khoảng thế kỉ 5 TCN) đã lập công thức cho ngữ pháp của

tiếng Phạn

. Kí hiệu của ông tương tự với kí hiệu toán học, và sử dụng các ngôn luật, các phép biến đổi,

đệ qui

với độ phức tạp đến mức ngữ pháp của ông có sức mạnh tính toán ngang với

máy Turing

. Công trình của Panini cũng đi trước cả lý thuyết hiện đại ngữ pháp hình thức (formal grammar) (có vai trò quan trọng trong điện toán), trong khi dạng Panini-Backus được sử dụng bởi những

ngôn ngữ lập trình

hiện đại nhất lại rất giống với luật ngữ pháp của Panini. Pingala (khoảng thế kỉ thứ 3 đến thứ nhất TCN) trong bản luận thuyết của mình về thi pháp đã sử dụng một phương pháp ứng với

hệ nhị phân

. Thảo luận của ông về

tổ hợp

của các

phách

, tương ứng với

định lý nhị thức

. Công trình của Pingala cũng chứa các ý tưởng cơ bản của các

số Fibonacci

(được gọi là mātrāmeru). Văn bản Brāhmī được phát triển ít nhất từ thời triều Maurya vào thế kỉ 4 TCN, với những bằng chứng khảo cổ học cho thấy nó xuất hiện vào khoảng 600 TCN. Chữ số Brahmi ở vào khoảng thế kỉ 3 TCN.

Giữa năm 400 TCN và 200 CN, các nhà toán học Jaina bắt đầu nghiên cứu toán học với mục đích duy nhất cho toán học. Họ là những người đầu tiên phát triển transfinite number,

lý thuyết tập hợp

, logarit, các định luật cơ bản của

lũy thừa

,

phương trình bậc ba

, phương trình bậc bốn,

dãy số

và dãy cấp số,

hoán vị

tổ hợp

, bình phương và lấy xấp xỉ

căn bậc hai

, và hàm mũ hữu hạn và

vô hạn

. Bản thảo Bakshali được viết giữa

200 TCN

và 200 bao gồm cách giải hệ phương trình tuyến tính tới năm ẩn, nghiệm phương trình bậc hai, cấp số cộng và cấp số nhân, dãy phức hợp, phương trình vô định bậc hai, phương trình không mẫu mực, và sự sử dụng

số 0

số âm

. Các tính toán chính xác cho số vô tỉ đã được tìm ra, bao gồm tính căn bậc hai của các số tới bao nhiêu chữ số sau dấu phẩy tùy thích (từ 11 chữ số trở lên).

Toán học Trung Hoa cổ đại (khoảng 1300 TCN-200 CN)

Bắt đầu từ thời

nhà Thương

(1600 TCN— 1046 TCN), toán học Trung Quốc sớm nhất còn tồn tại bao gồm các số được khắc trên mai rùa [3][4]. Các số này sử dụng hệ cơ số 10, vì vậy số 123 được viết (từ trên xuống dưới) bằng một kí hiệu cho số 1 rồi đến một kí hiệu hàng trăm, sau đó là kí hiệu cho số 2 rồi đến kí hiệu hàng chục, sau đó là số 3. Đây là hệ cơ số tiến bộ nhất trên thế giới vào thời điểm đó và cho phép tính toán được thực hiện bởi

bàn tính

. Thời điểm phát minh ra bàn tính không rõ, nhưng tài liệu cổ nhất vào

190

trong Lưu ý về the Art of Figures viết bởi Xu Yue. Bàn tính có thể đã được sử dụng trước thời điểm này.

Trung Quốc

, vào 212 TCN, vua

Tần Thủy Hoàng

đã ra lệnh đốt tất cả sách trong nước. Cho dù lệnh này không được tuân thủ hoàn toàn, nhưng ta vẫn biết rất ít về toán học Trung Hoa cổ đại.

Từ

triều Tây Chu

(từ 1046), công trình toán học cổ nhất còn tồn tại sau cuộc đốt sách là

Kinh Dịch

, trong đó sử dụng 64

quẻ

6

hào

cho mục đích triết học hay tâm linh. Các hào là các bộ hình vẽ gồm các đường gạch đậm liền hoặc đứt nét, đại diện cho dương và âm.

Sau cuộc đốt sách,

nhà Hán

(

202 TCN

) –

220

đã lập các công trình về toán học có thể là phát triển dựa trên các công trình mà hiện nay đã mất. Phần quan trọng nhất trong số đó là

Cửu chương toán thuật

, tiêu đề của nó xuất hiện trước 179 CN, nhưng là nằm trong các tiêu đề khác tồn tại trước đó. Nó bao gồm 264 bài toán chữ, chủ yếu là nông nghiệp, thương nghiệp, áp dụng của hình học để đo chiều cao và tỉ lệ trong các

chùa chiền

, công trình, thăm dò, và bao gồm các kiến thức về

tam giác vuông

và số

π

. Nó cũng áp dụng nguyên lí Cavalieri về thể tích hơn một nghìn năm trước khi Cavalieri đề xuất ở phương Tây. Nó đặt ra chứng minh toán học cho

Định lý Pythagore

, và công thức toán học cho

phép khử Gauss

. Công trình này đã được chú thích bởi Lưu Huy (Liu Hui) vào thế kỉ thứ 3 trước Công nguyên.

Người Trung Quốc cũng sử dụng biểu đồ tổ hợp phức còn gọi là ‘hình vuông thần kì’, được mô tả trong các thời kì cổ đại và được hoàn chỉnh bởi Dương Huy (

1238

1398

).

Toán học Trung Hoa cổ điển (khoảng 400-1300)

Bài chi tiết: Toán học Trung Hoa

Tổ Xung Chi

(Zu Chongzhi) (thế kỉ 5) vào thời

Nam Bắc Triều

đã tính được giá trị của số π chính xác tới bảy chữ số thập phân, trở thành kết quả chính xác nhất của số π trong gần 1000 năm.

Trong hàng nghìn năm sau nhà Hán, bắt đầu từ

nhà Đường

và kết thúc vào

nhà Tống

, toán học Trung Quốc phát triển thịnh vượng, nhiều bài toán phát sinh và giải quyết trước khi xuất hiện ở châu Âu. Các phát triển trước hết được nảy sinh ở Trung Quốc, và chỉ rất lâu sau mới được biết đến ở

phương Tây

, bao gồm

số âm

,

định lý nhị thức

, phương pháp

ma trận

để giải hệ

phương trình tuyến tính

Định lý số dư Trung Quốc

về nghiệm của hệ phương trình đồng dư bậc nhất.

  • Số âm được đề cập đến trong bảng cửu chương từ thời nhà Hán, 200TCN

    [16]

  • Định lý nhị thức và tam giác Pascal được Yang Hui nghiên cứu từ thế kỷ 13
  • Ma trận được người Trung Quốc nghiên cứu và thành lập bảng ma trận từ những năm 650 TCN

    [17]

Người Trung Quốc cũng đã phát triển

tam giác Pascal

luật ba

rất lâu trước khi nó được biết đến ở châu Âu. Ngoài Tổ Xung Chi ra, một số nhà toán học nổi tiếng ở Trung Quốc thời kì này là Nhất Hành, Shen Kuo, Chin Chiu-Shao, Zhu Shijie, và những người khác. Nhà khoa học Shen Kuo sử dụng các bài toán liên quan đến

giải tích

,

lượng giác

,

khí tượng học

,

hoán vị

, và nhờ đó tính toán được lượng không gian địa hình có thể sử dụng với các dạng trận đánh cụ thể, cũng như doanh trại giữ được lâu nhất có thể với lượng phu có thể mang lương cho chính họ và binh sĩ.

Thậm chí sau khi toán học Châu Âu bắt đầu nở rộ trong

thời kì Phục hưng

, toán học Châu Âu và Trung Quốc khác nhau về truyền thống, với sự sụt giảm của toán học Trung Quốc, cho tới khi các nhà truyền đạo

Thiên Chúa giáo

mang các ý tưởng toán học tới và đi giữa hai nền văn hóa từ thế kỉ 16 đến thế kỉ 18.

Toán học Ấn Độ cổ điển (khoảng 400-1600)

Cuốn Surya Siddhanta (khoảng

400

) giới thiệu các

hàm lượng giác

như

sin

, cosin, và sin ngược, và đưa ra các luật để xác định chuyển động chính xác của các thiên thể, tuân theo vị trí thật của chúng trên bầu trời. Thời gian vũ trụ tuần hoàn được giải thích trong cuốn sách, được sao chép từ một công trình trước đó, tương ứng với

năm thiên văn

với 365,2563627 ngày, chỉ dài hơn 1,4 giây so với giá trị hiện đại. Công trình này đã được dịch ra tiếng Ả Rập và

Latin

trong thời

Trung Cổ

.

Aryabhata vào năm

499

giới thiệu hàm versin, đưa ra bản sin đầu tiên, phát triển các kĩ thuật và

thuật toán

của

đại số

, vô cùng nhỏ,

phương trình vi phân

, và đạt được lời giải hoàn chỉnh cho các phương trình tuyến tính bằng một phương pháp ứng với phương pháp hiện đại, cùng với các tính toán

thiên văn

chính xác dựa trên

thuyết nhật tâm

. Một bản dịch

tiếng Ả Rập

của cuốn Aryabhatiya có từ thế kỉ 8, sau đó là bản

Latin

vào thế kỉ 13. Ông cũng tính giá trị

π

chính xác tới bốn chữ số sau dấu phẩy. Madhava sau đó vào thế kỉ 14 đã tính giá tị của số π chính xác tới chữ số thập phân thứ mười một là 3.14159265359.

Vào

thế kỉ 17

, Brahmagupta đã đưa ra

định lý Brahmagupta

, đẳng thức Brahmagupta và công thức Brahmagupta lần đầu tiên, trong cuốn Brahma-sphuta-siddhanta, ông đã giải thích một cách rõ ràng cách sử dụng

số 0

vừa là kí hiệu thay thế vừa là chữ số thập phânvà giải thích hệ ghi số Hindu-Arabic. Theo một bản dịch của văn bản tiếng Ấn về toán học này (khoảng

770

), các nhà toán học

Hồi giáo

đã được giới thiệu hệ ghi số này, mà họ gọi là hệ ghi số Ả Rập. Các nhà học giả Hồi giáo đã mang kiến thức về hệ ghi số này tới Châu Âu trước thế kỉ 12, và nó đã thay thế toàn bộ các hệ ghi số cũ hơn trên toàn thế giới. Vào thế kỉ 10, bình luận của Halayudha về công trình của Pingala bao gồm một nghiên cứu về

dãy Fibonacci

tam giác Pascal

, và mô tả dạng của một

ma trận

.

Vào thế kỉ 12, Bhaskara lần đầu tiên đặt ra ý tưởng về giải tích vi phân, cùng với khái niệm về đạo hàm, hệ số

vi phân

và phép lấy vi phân. Ông cũng đã chứng minh định lý Rolle (một trường hợp đặc biệt của định lý giá trị trung bình), nghiên cứu

phương trình Pell

, và xem xét đạo hàm của hàm sin. Từ thế kỉ 14, Madhava và các nhà toán học khác của Trường Kerala, phát triển thêm các ý tưởng của ông. Họ đã phát triển các khái niệm về thống kê toán học và số dấu phẩy động, và khái niệm căn bản cho việc phát triển của toàn bộ

giải tích

, bao gồm định lý giá trị trung bình,

tích phân

từng phần, quan hệ giữa diện tích dưới một đường cong và nguyên hàm của nó, kiểm tra tính hội tụ, phương pháp lặp để giải nghiệm phương trình phi tuyến, và một số chuỗi vô hạn, chuỗi hàm mũ,

chuỗi Taylor

và chuỗi lượng giác. Vào thế kỉ 16, Jyeshtadeva đã củng cố thêm rất nhiều định lý và phát triển của Trường Kerala trong cuốn Yuktibhasa, văn bản về đạo hàm đầu tiên trên thế giới, cũng đưa ra khái niệm

tích phân

. Phát triển toán học ở Ấn Độ chững lại từ cuối thế kỉ 16 do các rắc rối về chính trị.

Toán học Ả Rập và đạo Hồi (khoảng 800-1500)

Đế chế Ả Rập

Đạo Hồi

được thiết lập trên toàn bộ

Trung Đông

,

Trung Á

,

Bắc Phi

,

Iberia

, và một số phần của

Ấn Độ

trong thế kỉ 8 đã tạo nên những cống hiến quan trọng cho toán học. Mặc dù phần lớn các văn bản Đạo Hồi được viết bằng

tiếng Ả Rập

, chúng không hoàn toàn được viết bởi những người

Ả Rập

, rất có thể do vị thế của Hy Lạp trong thế giới Hellenistic, tiếng Ả Rập được sử dụng như là ngôn ngữ viết của các học giả không phải người Ả Rập trong thế giới Đạo Hồi thời bấy giờ. Một số trong những nhà toán học Đạo Hồi quan trọng nhất là người Ba Tư.

Muḥammad ibn Mūsā al-Ḵwārizmī, một nhà toán học và thiên văn học Ba Tư thế kỉ thứ 9, đã viết một vài cuốn sách quan trọng về hệ ghi số Hindu-Arabic và về các phương pháp giải phương trình. Cuốn sách của ông Về tính toán với hệ ghi số Hindu, được viết khoảng năm 825, cùng với công trình của nhà toán học Ả Rập Al-Kindi, là những công cụ trong việc truyền bá toán học Ấn Độ và hệ ghi số Hindu-Arabic tới phương Tây. Từ algorithm (

thuật toán

) bắt nguồn từ sự Latin hóa của tên ông, Algoritmi, và từ algebra (

đại số

) từ tên của một trong những công trình của ông, Al-Kitāb al-mukhtaṣar fī hīsāb al-ğabr wa’l-muqābala (Cuốn cẩm nang về tính toán bằng hoàn thiện và cân đối). Al-Khwarizmi thường được gọi là “cha đẻ của đại số”, bởi sự bảo tồn các phương pháp đại số cổ đại của ông và các cống hiến của ông đối với lĩnh vực này.

[18]

Các phát triển thêm của

đại số

được thực hiện bởi Abu Bakr al-Karaji (953—1029) trong học thuyết của ông al-Fakhri, ở đó ông mở rộng các quy tắc để thêm cả lũy thừa số nguyên và nghiệm nguyên vào các đại lượng chưa biết. Vào

thế kỉ 10

, Abul Wafa đã dịch công trình của

Diophantus

thành tiếng Ả Rập và phát triển hàm tang.

Chứng minh đầu tiên bằng quy nạp toán học xuất hiện trong một cuốn sách viết bởi Al-Karaji khoảng

1000

CN, người đã sử dụng nó để chứng minh

định lý nhị thức

,

tam giác Pascal

, và tổng của các

lập phương

nguyên

.

[19]

Nhà nghiên cứu lịch sử toán học, F. Woepcke,

[20]

đã ca ngợi Al-Karaji là “người đầu tiên giới thiệu các định lí của các phép tính

đại số

.”

Ibn al-Haytham là người đầu tiên bắt nguồn sử dụng các công thức tính tổng của lũy thừa bậc bốn sử dụng phương pháp quy nạp, từ đó phát triển thành phương pháp tính tích phân.

[21]

Omar Khayyam

, nhà thơ thế kỉ 12, cũng là một nhà toán học, viết Bàn luận về những khó khăn của Euclid, một cuốn sách về các thiếu sót của cuốn

Cơ sở của Euclid

, đặc biệt là tiên đề về đường thẳng song song, và do đó ông đặt ra nền móng cho

hình học giải tích

hình học phi Euclid

. Ông cũng là người đầu tiên tìm ra nghiệm hình học của

phương trình bậc ba

. Ông cũng có ảnh hưởng lón trong việc cải tổ lịch.Nhà toán học

Ba Tư

Nasir al-Din Tusi (Nasireddin) vào thế kỉ 13 đã tạo nên những bước tiến trong

lượng giác

hình cầu

. Ông cũng viết các công trình có ảnh hưởng lớn tới tiên đề về đường thẳng song song của

Euclid

.

Vào thế kỉ 15, Ghiyath al-Kashi đã tính giá trị số

π

tới chữ số thập phân thứ 16. Kashi cũng có một thuật toán cho phép tính căn bậc n, là trường hợp đặc biệt của các phương pháp đã đưa ra hàng thế kỉ sau bởi Ruffini và Horner. Các nhà toán học Hồi giáo đáng lưu ý khác bao gồm al-Samawal, Abu’l-Hasan al-Uqlidisi, Jamshid al-Kashi, Thabit ibn Qurra, Abu Kamil và Abu Sahl al-Kuhi.

Đến thời

Đế chế Ottoman

(từ thế kỉ 15), sự phát triển của toán học Hồi giáo bị chững lại. Điều này song song với sự chững lại của toán học khi người Roma chinh phục được thế giới Hellenistic.

John J. O’Connor và Edmund F. Robertson viết trong cuốn MacTutor History of Mathematics archive:

“Những nghiên cứu gần đây vẽ ra một bức tranh mới về những thứ mà ta nợ toán học Đạo Hồi. Hiển nhiên rất nhiều các ý tưởng nghĩ ra trước đó đã trở thành những khái niệm tuyệt vời do toán học Châu Âu của thế kỉ mười sáu, mười bảy, mười tám theo ta biết là đã được phát triển bởi các nhà toán học Ả Rập/Đạo Hồi bốn thế kỉ trước đó. Trong nhiều khía cạnh, toán học được nghiên cứu ngày nay còn gần hơn về phong cách đối với những thứ đó của toán học Đạo Hồi hơn là những thức của toán học Hellenistic.”

Toán học châu Âu Trung cổ (khoảng 300-1400)[

sửa

|

sửa mã nguồn

]

Mối quan tâm đến toán học của châu Âu Trung cổ là do nhiều lý do rất khác so với của các nhà toán học hiện đại. Một lý do đó là niềm tin rằng toán học là chìa khóa để hiểu được thứ bậc trong tự nhiên, thường được đánh giá trong cuộc đối thoại Timaeus của

Plato

và chuyến đi lớn mà Chúa đã “sắp xếp tất cả mọi thứ theo kích thước, số lượng, và cân nặng” (Wisdom 11:21).

Thời kì Trung cổ sơ khai (khoảng 300-1100)[

sửa

|

sửa mã nguồn

]

Boethius (480–524) đã dành một nơi cho toán học trong môn học khi ông đưa ra khái niệm “quadrivium” (tiếng Latinh: bốn con đường) để chỉ các môn số học, hình học, thiên văn học, và âm nhạc. Ông viết De institutione arithmetica, dịch thoáng nghĩa từ tiếng Hy Lạp tiêu đề của cuốn Introduction to Arithmetic của Nicomachus; De institutione musica, cũng phát triển từ gốc Hy Lạp; và một loạt các đoạn lấy từ cuốn

Cơ sở

của

Euclid

. Công trình của ông mang tính lý thuyết hơn là thực hành, và là công trình nền tảng của toán học cho đến khi các công trình toán học của Hy Lạp và A Rập được phục hồi.

[22]

[23]

Sự hồi sinh của toán học tại châu Âu (1100-1400)[

sửa

|

sửa mã nguồn

]

Vào thế kỉ 12, các nhà học giả Châu Âu đã chu du đến Tây Ban Nha và Sicily để tìm các văn bản tiếng A Rập, trong số chúng là cuốn Al-Jabr wa-al-Muqabilah của Al-Khwarizmi, được dịch thành tiếng Latinh bởi Robert of Chester và văn bản đầy đủ của cuốn Cơ sởcủa Euclid, được dịch thành rất nhiều phiên bản bởi Adelard of Bath, Herman of Carinthia, và Gerard of Cremona.

[24]

[25]

Những nguồn mới này lóe lên một thời kì hồi sinh của toán học.

Fibonacci

, vào đầu thế kỉ 13, đưa ra công trình toán học quan trọng đầu tiên ở châu Âu kể từ thời của

Eratosthenes

, một khoảng thời gian hơn một nghìn năm. Thế kỉ mười bốn đã chứng kiến sự phát triển của các khái niệm toán học mới để giải quyết một loạt bài toán.

[26]

Một lĩnh vực quan trọng cống hiến cho sự phát triển của toán học đó là phân tích các chuyển động địa phương.

Thomas Bradwardine đưa ra rằng vận tốc (V) tăng theo tỉ lệ số học khi tỉ số của lực (F) với lực cản (R) tăng theo số mũ. Bradwardine diễn tả điều này bằng một loạt các ví dụ cụ thể, nhưng mặc dù lôgarít thời đó chưa xuất hiện, ta có thể biểu diễn kết luận của ông dưới dạng V = log (F/R).

[27]

Phân tích của Bradwardine là một ví dụ của việc chuyển đổi kĩ thuật toán học được sử dụng bởi al-Kindivà Arnald of Villanova để định tính bản chất của thuốc trộn thành một bài toán vật lý khác.

[28]

Là một người trong nhóm Oxford Calculators vào

thế kỉ 14

, William Heytesbury, thiếu giải tích vi phân và khái niệm giới hạn, đã đưa ra việc đo vận tốc tức thời “bằng con đường mà có thể được mô tả bởi một vật thểnếu… nó được dịch chuyển đi theo cùng một tốc độ mà với điều đó nó được di chuyển trong thời khắc đã cho”.

[29]

Heytesbury và những người khác đã xác định bằng toán học khoảng cách đi được của một vật thể chuyển động có gia tốc không đổi (mà ta có thể giải dễ dàng bằng

Tích phân

), nói rằng “một vật thể chuyển động mà nhận vận tốc giảm hoặc tăng không đổi sẽ đi trong một thời gian nào đó cho trước một

khoảng cách

hoàn toàn bằng với khoảng cách ấy mà sẽ đi được nếu nó đang chuyển động liên tục trong cùng một thời gian với tốc độ trung bình”.

[30]

Nicole Oresme tại

Đại học Paris

và Giovanni di Casali người Italia độc lập với nhau đưa ra biểu diễn đồ thị của quan hệ này, thêm vào diện tích dưới đường thẳng biểu thị gia tốc không đổi, thể hiện tổng quãng đường đi được.

[31]

Trong một buổi thảo luận sau đó về cuốn Hình học của Euclid, Oresme đưa ra một phân tích chi tiết tổng quát trong đó ông nói rằng một vật thể sẽ nhận được trong mỗi số gia của thời gian một số gia của bất kì tính chất nào mà tăng như số lẻ. Do Euclid đã chứng minh tổng của các số lẻ là các số chính phương, tổng các tính chất đạt được bởi vật thể tăng theo bình phương thời gian.

[32]

Xem thêm: Những bài toán quan trọng về sự đồng biến và nghịch biến của hàm số

Toán học hiện đại sơ khai châu Âu[

sửa

|

sửa mã nguồn

]

Ở châu Âu vào buổi bình minh của

thời kì Phục Hưng

, toán học vẫn còn bị hạn chế bởi các kí hiệu cồng kềnh sử dụng hệ ghi số La Mã và diễn đạt các quan hệ bằng từ ngữ, hơn là bằng kí hiệu: không có dấu cộng, không có dấu bằng, và không sử dụng x thay cho đại lượng chưa biết.

Vào thế kỉ 16 các nhà toán học châu Âu bắt đầu tạo nên những bước tiến mới mà không cần biết đến những nơi khác trên thế giới, tới mức như ngày nay. Bước tiến đầu tiên trong số đó là nghiệm tổng quát của

phương trình bậc ba

, thông thường được ghi công cho Scipione del Ferro vào khoảng

1510

, nhưng xuất bản lần đầu tiên bởi Johannes Petreius ở

Nürnberg

trong cuốn Ars magna của

Gerolamo Cardano

, trong đó cũng có nghiệm tổng quát của phương trình bậc bốn từ học trò của Cardano Lodovico Ferrari.

Từ thời điểm này, toán học phát triển nhanh chóng, bổ trợ cho và lấy lợi ích từ các tiến bộ mới cùng thời của

vật lý học

. Quá trình này càng được thúc đẩy bởi những tiến bộ trong

ngành in

. Cuốn sách toán học sớm nhất được in là cuốn Theoricae nova planetarum của Peurbach vào

1472

, theo sau là một cuốn sách về số học thương mại Treviso Arithmetic năm 1478 và cuốn sách toán học thực sự của

Euclid

, cuốn

Cơ sở

được in và xuất bản bởi Ratdolt

1482

.Do nhu cầu cấp thiết về định hướng và vẽ bản đồ chính xác cho những khu vực rộng lớn,

lượng giác

đã phát triển thành một ngành lớn của toán học. Bartholomaeus Pitiscus là người đầu tiên sử dụng từ Trigonometria (lượng giác) trong cuốn sách cùng tên của ông vào năm 1595. Bảng

sin

và cosin của Regiomontanus được xuất bản vào 1533.

[33]

Đến cuối thế kỉ, nhờ có Regiomontanus (1436-1476) và François Vieta (1540-1603), cùng với những người khác, mà toán học đã được viết bằng hệ ghi số Hindu-Arabic và theo một dạng mà không quá khác xa so với các kí hiệu sử dụng ngày nay.

Thế kỉ 17[

sửa

|

sửa mã nguồn

]

Thế kỉ 17 chứng kiến sự bùng nổ chưa từng thấy của các ý tưởng toán học và khoa học trên toàn Châu Âu.

Galileo

, một người Italia, đã quan sát các

mặt trăng của Sao Mộc

trên quĩ đạo quanh hành tinh đó, sử dụng kính viễn vọng dựa trên một đồ chơi nhập khẩu từ Hà Lan.

Tychoo Brahe, ở vương quốc Đan Mạch, đã thu thập một lượng lớn các dữ liệu toán học mô tả các vị trí của các hành tinh trên bầu trời. Học trò của ông, nhà toán học người Đức

Johannes Kepler

, bắt đầu làm việc với các dữ liệu này. Một phần bởi vì muốn giúp Kepler trong việc tính toán,

John Napier

, ở Scotland, là người đầu tiên nghiên cứu logarit tự nhiên. Kepler thành công trong việc lập công thức toán học các định luật của chuyển động hành tinh.

Hình học giải tích

được phát triển bởi

René Descartes

(1596-1650), một nhà toán học và triết học người Pháp, đã cho phép những quĩ đạo này có thể vẽ được trên đồ thị, trong

hệ toạ độ Descartes

. Xây dựng dựa trên những công trình đi trước bởi rất nhiều nhà toán học,

Isaac Newton

, người Anh, đã khám phá ra các định luật của vật lý để giải thích

định luật Kepler

, và cùng đưa đến một khái niệm bây giờ ta gọi là

giải tích

. Một cách độc lập,

Gottfried Wilhelm Leibniz

, ở Đức, đã phát triển giải tích và rất nhiều các kí hiệu giải tích vẫn còn được sử dụng cho đến ngày nay. Khoa học và toán học đã trở thành một nỗ lực quốc tế, nhanh chóng lan ra toàn thế giới.

[34]

Thêm vào ứng dụng của toán học đối với ngành thần học,

toán học ứng dụng

bắt đầu mở rộng ra các lĩnh vực mới khác, với các lá thư giữa

Pierre de Fermat

Blaise Pascal

. Pascal và Fermat đã đặt nền móng cho việc nghiên cứu

lý thuyết xác suất

và các định luật

tổ hợp

tương ứng trong các thảo luận của họ về trò

đánh bạc

. Pascal, với Pascal’s Wager, đã cố gắng sử dụng lý thuyết xác suất mới của mình để tranh luận về một cuộc sống theo tôn giáo, thực tế là dù xác suất thành công có nhỏ đi nữa, phần lợi vẫn là vô cùng. Trong hoàn cảnh này, điều đó đã dự báo trước sự phát triển của

lý thuyết thỏa dụng

ở nửa sau thế kỉ 18-19

Thế kỉ 18[

sửa

|

sửa mã nguồn

]

Như ta đã thấy, sự hiểu biết về các số tự nhiên 1, 2, 3,… còn trước bất kì văn bản viết nào. Những nền văn minh sớm nhất – ở Lưỡng Hà, Ai Cập, Ấn Độ và Trung Quốc – đều đã biết đến số họcMột cách để xem xét sự phát triển của rất nhiều hệ toán học hiện đại khác nhau là xem các hệ mới được nghiên cứu để trả lời các câu hỏi về số học của các hệ cũ hơn. Trong thời tiền sử, phân số trả lời được câu hỏi: số nào, khi nhân với 3, thì được kết quả là 1. Ở Ấn Độ và Trung Quốc, và rất lâu sau ở Đức, các số âm được phát triển đề trả lời câu hỏi: bạn nhận được kết quả là gì khi lấy một số nhỏ trừ đi số lớn. Việc phát minh ra số không có thể là để trả lời câu hỏi: bạn nhận được kết quả là gì khi trừ một số cho chính nó.

Một câu hỏi tự nhiên khác là: căn bậc hai của số hai là kiểu số gì? Người Hy Lạp đã biết rằng nó không phải một phân số, và câu hỏi này đã đóng vai trò quan trọng trong việc phát triển

liên phân số

. Nhưng một câu trả lời tốt hơn xuất hiện cùng với sự phát minh ra chữ số thập phân, phát triển bởi

John Napier

(1550-1617) và được hoàn chỉnh sau đó bởi Simon Stevin. Sử dụng các chữ số thập phân, và một ý tưởng mà tiên đoán trước được khái niệm về giới hạn, Napier cũng đã nghiên cứu một hằng số mới, mà

Leonhard Euler

(1707-1783) đã đặt tên là

số e

.

Euler có rất nhiều ảnh hưởng tới việc chuẩn hóa các kí hiệu và thuật ngữ toán học. Ông đã đặt tên căn bậc hai của âm một bằng kí hiệu i. Ông cũng phổ biến việc sử dụng chữ cái Hy Lạp π để chỉ tỉ số của chu vi một đường tròn đối với đường kính của nó. Sau đó ông còn phát triển thêm một trong những công thức đáng chú ý nhất của toán học:

Xem thêm: Ôn tập học kỳ II môn Toán lớp 10 cùng HOCMAI

Thế kỉ 19[

sửa

|

sửa mã nguồn

]

Xuyên suốt thế kỉ 19 toán học nhanh chóng trở nên trừu tượng. Trong thế kỉ này đã sống một trong những nhà toán học vĩ đại nhất mọi thời đại,

Carl Friedrich Gauss

(1777-1855). Không kể đến rất nhiều cống hiến cho khoa học, trong toán học lý thuyết ông đã làm nên các công trình có tính cách mạng về

hàm số

với

biến phức

trong

hình học

và về sự hội tụ của các

chuỗi

. Ông đã đưa ra chứng minh đầu tiên của

định lý cơ bản của đại số

và của

luật tương hỗ bậc hai

.

Thế kỉ này chứng kiến sự phát triển của hai dạng

hình học phi Euclid

, trong đó

tiên đề về đường thẳng song song

của

hình học Euclid

không còn đúng nữa. Trong hình học Euclid, cho một đường thẳng và một điểm không nằm trên đường thẳng đó, thì chỉ có một và chỉ một đường thẳng song song với đường thẳng đã cho và đi qua điểm đó mà thôi.

Nhà toán học Nga

Nikolai Ivanovich Lobachevsky

và đối thủ của ông, nhà toán học Hungary Janos Bolyai, độc lập với nhau sáng lập ra hình học hyperbolic, trong đó sự duy nhất của các đường thẳng song song không còn đúng nữa, mà qua một điểm ngoài đường thẳng có thể kẻ được vô số đường thẳng song song với đường thẳng đã cho. Trong hình học này tổng các góc của một tam giác có thể nhỏ hơn 180°.

Hình học Elliptic đã được phát triển sau đó vào thế kỉ 19 bởi nhà toán học người Đức

Bernhard Riemann

; ở đây không thể tìm thấy đường thẳng song song và tổng các góc của một tam giác có thể lớn hơn 180°. Riemann cũng phát triển

hình học Riemann

, trong đó hợp nhất và tổng quát hóa cao độ ba loại hình học, và ông định nghĩa khái niệm một

đa tạp

, trong đó tổng quát hóa khái niệm về đường và

mặt

. Các khái niệm này rất quan trọng trong

Thuyết tương đối

của

Albert Einstein

.

Cũng trong thế kỉ 19

William Rowan Hamilton

đã phát triển noncommutative algebra, nền móng của lý thuyết vòng.

Thêm vào những hướng mới trong toán học, các nền toán học cũ hơn được đưa vào các nền tảng logic mạnh hơn, đặc biệt là trong trường hợp của

giải tích

với các công trình của

Augustin Louis Cauchy

Karl Weierstrass

.

Một dạng đại số mới được phát triển vào thế kỉ 19 gọi là

Đại số Boole

, được phát minh bởi nhà toán học người Anh

George Boole

. Nó là một hệ chỉ gồm các số 0 và 1, một hệ mà ngày nay có những ứng dụng quan trọng trong

khoa học máy tính

.

Cũng lần đầu tiên, các giới hạn của toán học đã được khám phá.

Niels Henrik Abel

, một người Na Uy, và

Évariste Galois

, một người Pháp, đã chứng minh được rằng không có phương pháp đại số để giải

phương trình đại số

với

bậc

lớn hơn bốn. Các nhà toán học thế kỉ 19 khác áp dụng kết quả này trong chứng minh của họ rằng thước kẻ và compa là không đủ để chia ba một góc, để dựng cạnh của một hình lập phương mà thể tích của nó gấp đôi thể tích một hình lập phương cho trước, hay để dựng một hình vuông có diện tích bằng diện tích hình tròn cho trước (còn gọi là phép cầu phương hình tròn). Các nhà toán học đã tốn công vô ích để giải tất cả các bài toán này từ thời Hy Lạp cổ đại.

Các nghiên cứu của Abel và Galois về nghiệm của rất nhiều loại phương trình đa thức khác nhau đã đặt nền móng cho các phát triển sâu hơn về

lý thuyết nhóm

, và các lĩnh vực liên quan của

đại số trừu tượng

. Trong thế kỉ 20 các nhà vật lý va các nhà khoa học khác đã thấy lý thuyết nhóm là một cách lý tưởng để nghiên cứu symmetry.

Thế kỉ 19 cũng chứng kiến sự thành lập của các hội toán học đầu tiên: Hội toán học London vào năm 1865, Hội toán học Pháp vào năm 1872, Hội toán học Palermo vào năm 1884, Hội toán học Edinburgh vào năm 1864 và

Hội toán học Mỹ

vào năm 1888.

Trước thế kỉ 20, có rất ít các nhà toán học thật sự sáng tạo trên thế giới ở bất kì thời điểm nào. Phần lớn vì các nhà toán học hoặc sinh ra trong gia đình giàu có, như

Napier

, hoặc được hậu thuẫn bởi các nhân vật giàu có, như Gauss. Có rất ít người cảm thấy cuộc sống nghèo nàn dạy học ở trường đại học, như

Fourier

.

Niels Henrik Abel

, không thể nhận được một vị trí nào, đã chết với tài sản là sự suy dinh dưỡng.

Thế kỉ 20[

sửa

|

sửa mã nguồn

]

Tính chuyên nghiệp của nhà toán học ngày càng trở nên quan trọng vào thế kỉ 20. Mỗi năm, hàng trăm bằng tiến sĩ trong toán học được trao, và các ngành nghề đều có trong giảng dạy và công nghiệp. Phát triển toán học đã tăng với một tốc độ cực nhanh, với quá nhiều phát triển mới về khảo sát để thậm chí động chạm tới hầu hết các lĩnh vực quan trọng nhất.

Vào 1900,

David Hilbert

đưa ra danh sách

23 bài toán

chưa có lời giải trong toán học tại Hội nghị các nhà toán học quốc tế. Các bài toán này bao trùm rất nhiều lĩnh vực của toán học và đã tạo nên sự chú ý đặc biệt trong toán học thế kỉ 20. Hiện nay mười bài toán đã có lời giải, bảy đã giải được một phần và hai bài vẫn còn mở. Bốn bài còn lại quá lỏng để nói rằng liệu đã giải được chưa. Hilbert cũng đã đặt nền móng cho việc tiên đề hóa hình học với cuốn sách “Grundlagen der Geometrie” (Nền tảng của Hình học) bao gồm 21 tiên đề, thay cho các tiên đề Euclid truyền thống. Chúng tránh đi những điểm yếu đã được chỉ ra trong các tiên đề Euclid, mà các tác phẩm của ông (Euclid) lúc đó vẫn được xem như sách giáo khoa. Ông mong muốn hệ thống hóa toán học trên một nền tảng logic vững chắc và đầy đủ, tin rằng:

  1. Tất cả toán học có thể suy ra từ một hệ thống hữu hạn các tiên đề được chọn ra một cách đúng đắn
  2. Rằng một hệ thống tiên đề như vậy là có thể chứng minh được tính nhất quán (tính không mâu thuẫn) của nó

Cũng chính Hilbert đã đưa ra khái niệm

không gian Hilbert

, một cơ sở cho

giải tích hàm

.

Những năm 1930,

Kurt Gödel

đã đưa ra định lý bất toàn (en:Gödel’s incompleteness theorems) khẳng định rằng bất kì một hệ tiên đề hình thức độc lập nào đủ mạnh để miêu tả số học cũng hàm chứa những mệnh đề không thể khẳng định mà cũng không thể phủ định; tính nhất quán của một hệ thống tiên đề không thể được chứng minh bên trong hệ thống đó. Mở rộng ra, không thể đi tìm tính chân lý của toán học (và của

khoa học

nói chung) bên trong cấu trúc duy lý của bản thân toán học hay của khoa học đó; cái đúng của toán học phải tìm ngoài toán học.

Trong những năm

1900

,

Srinivasa Aiyangar Ramanujan

(1887-1920) đã phát triển hơn 3000 định lý, bao gồm lý thuyết về tính chất của các siêu hợp số (highly composite number),

hàm phần chia

(partition function) và các tiệm cận của nó, rồi các hàm theta Ramanujan. Ông cũng tạo nên những đột phá và phát hiện trong lĩnh vực hàm gamma, dạng modular, chuỗi phân kì, chuỗi siêu hình học và lý thuyết số nguyên tố.

Năm 1947, tác phẩm “Cơ sở phân tích kinh tế” của

Paul Samuelson

công bố được xem là khởi đầu của

toán kinh tế

đương đại

[35]

.

Năm 1952, John Anthony Pople (31/10/1925-15/3/2004) người Anh tại

đại học Cambridge

đã vận dụng toán học trong hóa học, lập ra công thức cho một sơ đồ cơ bản để phát triển những mô hình toán học phục vụ nghiên cứu phân tử mà không cần tiến hành thí nghiệm. Ông đã sử dụng máy tính phục vụ cho việc kiểm tra và xác định cấu trúc hóa học cũng như các chi tiết của vật chất. Walter Kohn người Áo (9/3/1923-?), làm việc tại đại học Santa Barbara (Mỹ) người nghiên cứu lý thuyết về mật độ, đã đơn giản hóa mô tả toán học về sự liên kết giữa các nguyên tử tạo nên phân tử.

Những năm 60-70 của thế kỷ 20, việc giáo dục toán học đã bắt đầu sử dụng các phương pháp mới, trong đó nghiên cứu toán được bắt đầu từ những lĩnh vực cơ sở như lý thuyết tập hợp, logic sơ cấp, hệ thống số và hệ thống đếm, số học đồng nhất mô-đun (modular consistency arithmetic)

[36]

.

Các phỏng đoán nổi tiếng trong quá khứ tạo nên các kĩ thuật mới và mạnh. Wolfgang Haken và Kenneth Appel đã sử dụng một chiếc máy tính để chứng minh

định lý bốn màu

vào năm 1976.

Andrew Wiles

, làm việc một mình trong văn phòng trong nhiều năm trời, cuối cùng đã chứng minh được

Định lý lớn Fermat

vào năm 1995, kết thúc hơn 300 năm đi tìm lời giải.

Toàn bộ các lĩnh vực mới của toán học như

logic toán

,

topo học

, lý thuyết độ phức tạp, và

lý thuyết trò chơi

đã thay đổi các thể loại câu hỏi mà có thể trả lời được bởi các phương pháp toán học.

Nhóm Bourbaki của Pháp đã cố gắng đưa toàn bộ toán học thành một thể thống nhất chung, xuất bản dưới bút danhNicolas Bourbaki. Công trình khổng lồ của họ đã gây rất nhiều tranh luận trong giáo dục toán học.

Đến cuối thế kỉ, toán học đã thậm chí thâm nhập vào nghệ thuật, như hình học

fractal

đã tạo nên những hình thù đẹp đẽ chưa từng thấy bao giờ.

Math equation dice d6.JPG

Thế kỉ 21[

sửa

|

sửa mã nguồn

]

Vào buổi bình minh của thế kỉ 21, rất nhiều nhà giáo dục đã bày tỏ quan ngại về một lớp người nghèo, không được học hành về toán học và khoa học

[37]

[38]

. Trong khi đó toán học, khoa học, công trình sư và công nghệ đã cùng nhau tạo nên những tri thức, kết nối, và tài sản mà các triết gia cổ đại không dám mơ đến.

Dương Quốc Việt, một nhà toán học Việt Nam đã giải quyết được ba vấn đề mở của lý thuyết các vành nổ Cohen-Macanlay và Gorenstein, hoàn thành việc quy bội trộn về bội Hilbert Samuel, vấn đề về bội của các vành nổ của Fiber Cone, tính chất Cohen – Macanlay của Fiber Cone

Năm 2005,

Peter David Lax

(1/5/1926, Viện Khoa học Toán Courant, Đại học New York) đã nghiên cứu thành công lý thuyết và ứng dụng của

phương trình vi phân riêng phần

cũng như tính toán nghiệm của chúng.

Vào giữa tháng 3 năm 2007, một đội các nhà nghiên cứu khắp Bắc Mĩ và Châu Âu đã sử dụng các mạng máy tính để vẽ sơ đồ E8thuộc

nhóm Lie

[39]

. Mặc dù ta chưa thể biết chính xác việc này có ứng dụng gì, nhưng khám phá này đánh dấu một mốc quan trọng về cả tinh thần hợp tác và công nghệ máy tính trong toán học hiện đại, khi xây dựng mô hình vật thể phức tạp nhất mà con người từng biết đến với 248 chiều, với dung lượng thể hiện lớn hơn cả bộ gen con người

[40]

.

Lịch sử toán học tại Việt Nam[

sửa

|

sửa mã nguồn

]

Toán học tại Việt Nam trước đây ít được chú ý phát triển, chủ yếu được phát triển một cách tự phát. Trên một số đồ gốm thời kì Phùng Nguyên , có vẽ hình hoa văn với những đường song song uốn khúc đều đặn, liên tục; hình tam giác xếp ngược chiều nhau, hình tam giác cuộn chứng tỏ người Việt Nam 3-4 nghìn năm trước đây đã có những nhận thức hình học và tư duy chính xác.

Đời Lý, năm 1077, thi toán được đưa vào chương trình khoa cử

Thời nhà Hồ bắt buộc chương trình thi toán, áp dụng rộng rãi toán học vào kinh tế, sản xuất: dùng toán học đo lại tổng số ruộng đất toàn quốc, lập thành sổ sách điền địa từng lộ, phủ, châu, huyện . Sau 1945, một số người đi học ở nước ngoài, cộng thêm việc mở mang giáo dục đã nâng cao nghiên cứu toán học của Việt Nam. Các trường đại học đã mở thêm các chuyên khoa toán.

Vật lý học là một môn khoa học tự nhiên tập trung vào sự nghiên cứu vật chất

]

và chuyển động của nó trong không gian , cùng với những khái niệm liên quan như năng lượng ,Vật lý học là một trong những bộ môn khoa học lâu đời nhất, với mục đích tìm hiểu sự vân động của vũ trụ

Lấy từ “

https://vi.wikipedia.org/w/index.php?title=Thành_viên:Havanviet07&oldid=55139001

Chuyên mục: Kiến thức

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Check Also
Close
Back to top button